In statistics and research, internal consistency is typically a measure based on the correlations between different items on the same test (or the same subscale on a larger test). It measures whether several items that propose to measure the same general construct produce similar scores. For example, if a respondent expressed agreement with the statements "I like to ride bicycles" and "I've enjoyed riding bicycles in the past", and disagreement with the statement "I hate bicycles", this would be indicative of good internal consistency of the test. Cronbach's alpha Internal consistency is usually measured with Cronbach's alpha, a statistic calculated from the pairwise correlations between items. Internal consistency ranges between negative infinity and one. Coefficient alpha will be negative whenever there is greater within-subject variability than between-subject variability. A commonly accepted rule of thumb for describing internal consistency is as follows: Very high reliabilities (0.95 or higher) are not necessarily desirable, as this indicates that the items may be redundant. The goal in designing a reliable instrument is for scores on similar items to be related (internally consistent), but for each to contribute some unique information as well. Note further that Cronbach's alpha is necessarily higher for tests measuring more narrow constructs, and lower when more generic, broad constructs are measured. This phenomenon, along with a number of other reasons, argue against using objective cut-off values for internal consistency measures. Alpha is also a function of the number of items, so shorter scales will often have lower reliability estimates yet still be preferable in many situations because they are lower burden. An alternative way of thinking about internal consistency is that it is the extent to which all of the items of a test measure the same latent variable.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.