The Brønsted–Lowry theory (also called proton theory of acids and bases) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923. The basic concept of this theory is that when an acid and a base react with each other, the acid forms its conjugate base, and the base forms its conjugate acid by exchange of a proton (the hydrogen cation, or H+). This theory generalises the Arrhenius theory.
In the Arrhenius theory, acids are defined as substances that split up in aqueous solutions to give H+ (hydrogen ions or protons), while bases are defined as substances that split up in aqueous solutions to give OH− (hydroxide ions).
In 1923 physical chemists Johannes Nicolaus Brønsted in Denmark and Thomas Martin Lowry in England both independently proposed the theory named after them. In the Brønsted–Lowry theory acids and bases are defined by the way they react with each other, generalising them. This is best illustrated by an equilibrium equation.
acid + base ⇌ conjugate base + conjugate acid.
With an acid, HA, the equation can be written symbolically as:
HA + B A- + HB+
The equilibrium sign, ⇌, is used because the reaction can occur in both forward and backward directions (is reversible). The acid, HA, is a proton donor which can lose a proton to become its conjugate base, A−. The base, B, is a proton recipient which can become its conjugate acid, HB+. Most acid–base reactions are fast, so the substances in the reaction are usually in dynamic equilibrium with each other.
Consider the following acid–base reaction:
CH3 COOH + H2O CH3 COO- + H3O+
Ethanoic acid, , is an acid because it donates a proton to water () and becomes its conjugate base, the ethanoate ion (). is a base because it accepts a proton from and becomes its conjugate acid, the hydronium ion, ().
The reverse of an acid–base reaction is also an acid–base reaction, between the conjugate acid of the base in the first reaction and the conjugate base of the acid.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Le trifluorure de bore est un gaz toxique et incolore de formule chimique BF3. Il réagit avec l'air humide en formant des fumées blanches composées de fluorure d'hydrogène, d'acide borique et d'acide fluoroborique. Dans ce composé, le bore est déficitaire en électrons. Au cours des réactions chimiques, BF3 se comporte donc comme un acide de Lewis. Il réagit par exemple avec les fluorures en formant des sels de tétrafluorure : CsF + BF3 → CsBF4 La configuration spatiale adoptée par cette molécule est conforme à la théorie VSEPR.
vignette|Trois variétés d'hydron : proton, deutéron et triton Un hydron est un cation hydrogène, de symbole H. Comme l'atome d'hydrogène neutre n'a qu'un électron, un hydron est un noyau nu (sans électrons). Les termes hydron et proton ne sont pas équivalents : le proton est bien un hydron puisque c'est le cation H du protium H (l'isotope qui ne comporte pas de neutrons, certes le plus abondant), mais un hydron peut tout aussi bien être un deutéron H ou D (noyau de deutérium H ou D, avec un neutron) ou un triton H ou T (noyau de tritium H ou T, avec deux neutrons), voire un cation H (noyau de quadrium H, avec trois neutrons) : le terme hydron désigne n'importe quel cation de l'hydrogène, sans distinction entre ses isotopes.
Le diméthylsulfoxyde noté aussi DMSO est un solvant polaire organosulfuré, aprotique, de formule . Il se présente comme un liquide incolore, qui dissout à la fois des composés polaires et non-polaires, et qui est miscible dans une large gamme de solvants organiques, ainsi que dans l'eau. Il pénètre très facilement et rapidement la peau avant de diffuser dans tout l'organisme, ce qui explique qu'une personne en ayant reçu sur la peau peut ensuite rapidement ressentir un goût d'ail dans la bouche.
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
Couvre les procédures de sécurité en laboratoire et le processus de titrage d'un acide diprotique.
Couvre diverses réactions asymétriques catalytiques en chimie organique, dont l'activation des acides Lewis et Brønsted, Jacobsen Urea Catalyst et Mannick Reaction.
Explique les définitions de base acide, les constantes d'équilibre, l'échelle de pH, les paires conjuguées et les tampons.
Frustrated Lewis pairs (FLPs), featuring reactive combinations of Lewis acids and Lewis bases, have been utilized for myriad metal-free homogeneous catalytic processes. Immobilizing the active Lewis sites to a solid support, especially to porous scaffolds, ...
Amer Chemical Soc2024
, , ,
Thescalable synthesis of high-temperature H-2-sieving membranesfor energy-efficient carbon capture can potentiallyenable the implementation of precombustion carbon capture at a rapidpace. Synthesis of H-2-sieving membranes for high-temperatureapplications ...
AMER CHEMICAL SOC2023
, , ,
A highly appealing strategy to modulate a catalyst's activity and/or selectivity in a dynamic and noninvasive way is to incorporate a photoresponsive unit into a catalytically competent molecule. However, the description of the photoinduced conformational ...