Catégorie à involutionEn mathématiques, une †-catégorie (catégorie dague, également appelée catégorie involutive ou catégorie à involution) est une catégorie dotée d'une certaine structure appelée dague ou involution. Le nom de catégorie dague a été inventée par Selinger. Une †-catégorie est une catégorie dotée d'un foncteur involutif qui correspond à l'identité sur les objets, où est la catégorie opposée (ie un foncteur contravariant tel que composé par lui-même, donne le foncteur trivial ).
Dagger symmetric monoidal categoryIn the mathematical field of , a dagger symmetric monoidal category is a that also possesses a . That is, this category comes equipped not only with a tensor product in the sense but also with a , which is used to describe unitary morphisms and self-adjoint morphisms in : abstract analogues of those found in FdHilb, the . This type of was introduced by Peter Selinger as an intermediate structure between and the that are used in categorical quantum mechanics, an area that now also considers dagger symmetric monoidal categories when dealing with infinite-dimensional quantum mechanical concepts.
Categorical quantum mechanicsCategorical quantum mechanics is the study of quantum foundations and quantum information using paradigms from mathematics and computer science, notably . The primitive objects of study are physical processes, and the different ways that these can be composed. It was pioneered in 2004 by Samson Abramsky and Bob Coecke. Categorical quantum mechanics is entry 18M40 in MSC2020. Mathematically, the basic setup is captured by a : composition of morphisms models sequential composition of processes, and the tensor product describes parallel composition of processes.
Compact closed categoryIn , a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the having finite-dimensional vector spaces as s and linear maps as s, with tensor product as the structure. Another example is , the category having sets as objects and relations as morphisms, with .
Symmetric monoidal categoryIn , a branch of mathematics, a symmetric monoidal category is a (i.e. a category in which a "tensor product" is defined) such that the tensor product is symmetric (i.e. is, in a certain strict sense, naturally isomorphic to for all objects and of the category). One of the prototypical examples of a symmetric monoidal category is the over some fixed field k, using the ordinary tensor product of vector spaces.
Impossibilité du clonage quantiqueLe théorème d'impossibilité du clonage quantique est un résultat de mécanique quantique qui interdit la copie à l'identique d'un état quantique inconnu et arbitraire. Il a été énoncé en 1982 par Wootters, Zurek, et Dieks. Ce théorème a d'importantes conséquences en informatique quantique. Par exemple, il fait en sorte qu'il est impossible d'adapter un code quantique directement du code de répétition de la théorie des codes classique. Ceci rend la tâche d'élaborer un code quantique difficile par rapport aux codes classiques.