Dagger compact categoryIn , a branch of mathematics, dagger compact categories (or dagger compact closed categories) first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations (that is, ). They also appeared in the work of John Baez and James Dolan as an instance of semistrict k-tuply , which describe general topological quantum field theories, for n = 1 and k = 3.
Compact closed categoryIn , a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the having finite-dimensional vector spaces as s and linear maps as s, with tensor product as the structure. Another example is , the category having sets as objects and relations as morphisms, with .
Catégorie des relationsEn mathématiques, plus précisément en théorie des catégories, la catégorie des relations, notée Rel, est la catégorie dont les objets sont les ensembles et dont les morphismes sont les relations binaires entre ces ensembles. La composition de deux relations R ⊆ A × B et S ⊆ B × C est donné par (a, c) ∈ S o R ⇔ ∃ b ∈ B, (a, b) ∈ R et (b, c) ∈ S. Rel est isomorphe à Relop, en effet, on peut associer uniquement à toute relation sa relation réciproque. Rel est une catégorie cartésienne: L'objet terminal est l'ensemble vide.
Catégorie monoïdaleEn mathématiques, une catégorie monoïdale est une catégorie munie d'un bifoncteur qui généralise la notion de produit tensoriel de deux structures algébriques. Intuitivement, il s'agit de l'analogue, au niveau des catégories, de la notion de monoïde, c'est-à-dire que le bifoncteur joue le rôle d'une sorte de multiplication pour les objets de la catégorie. Une catégorie monoïdale est une catégorie munie : D'un bifoncteur appelé produit tensoriel. D'un objet I appartenant à appelé « objet unité ».