Polyèdre isoédriquevignette| Un jeu de dés isoédriques En géométrie, un polytope de dimension 3 (un polyèdre) ou plus est dit isoédrique lorsque ses faces sont identiques. Plus précisément, toutes les faces ne doivent pas être simplement isométriques, mais doivent être transitives, c'est-à-dire qu'elles doivent se trouver dans la même orbite de symétrie. En d'autres termes, pour toutes les faces A et B, il doit y avoir une symétrie de l'ensemble du solide par rotations et réflexions qui envoie A sur B.
TétrakihexaèdreUn tétrakihexaèdre est un solide de Catalan (le dual d'un solide d'Archimède). Son dual est l'octaèdre tronqué. Il peut être vu comme un cube dont chaque face (de côté a) est couverte par une pyramide carrée (de hauteur a/4). Cette interprétation est exprimée dans le nom, d'origine grecque : = « hexaèdre » (six faces) = cube, = « quatre fois » = faces partagées en 4). Le rapport entre les longueurs des deux types d'arêtes est de 3/4.
Tétraèdre tronquéthumb|Patron (géométrie) Le tétraèdre tronqué est un solide d'Archimède. Il possède 4 faces hexagonales régulières, 4 faces triangulaires régulières, 12 sommets et 18 arêtes. Il est obtenu à partir d'un tétraèdre régulier dont on a coupé les quatre sommets en sectionnant les arêtes au tiers de leur longueur. Les coordonnées cartésiennes pour les sommets d'un tétraèdre tronqué centré à l'origine sont : (±3, ±1, ±1), (±1, ±3, ±1), (±1, ±1, ±3), où le nombre de signes négatifs dans chaque triplet de coordonnées est pair (0 ou 2).
Composé polyédriqueUn composé polyédrique est un polyèdre qui est lui-même composé de plusieurs autres polyèdres partageant un centre commun, l'analogue tridimensionnel des tels que l'hexagramme. Les sommets voisins d'un composé peuvent être connectés pour former un polyèdre convexe appelé l'enveloppe convexe. Le composé est un facettage de l'enveloppe convexe. Un autre polyèdre convexe est formé par le petit espace central commun à tous les membres du composé. Ce polyèdre peut être considéré comme le noyau pour un ensemble de stellations incluant ce composé.
HexadécachoreL'hexadécachore est, en géométrie, un 4-polytope régulier convexe, c'est-à-dire un polytope à 4 dimensions à la fois régulier et convexe. Il est constitué de 16 cellules tétraédriques. L'hexadécachore est l'hyperoctaèdre de dimension 4. Son dual est le tesseract (ou hypercube). Il pave l'espace euclidien à quatre dimensions.
Solide de Catalanthumb|Un dodécaèdre rhombique En mathématiques, un solide de Catalan ou dual archimédien, est un polyèdre dual d'un solide d'Archimède. Les solides de Catalan ont été nommés ainsi en l'honneur du mathématicien belge Eugène Catalan qui, en 1865, fut le premier à les étudier de manière systématique et les décrire et représenter avec soin et minutie. Les solides de Catalan sont tous convexes. Ils sont de faces uniformes mais non de sommets uniformes, en raison du fait que les duaux archimédiens sont de sommets uniformes et non de faces uniformes.
Tétraèdrethumb|Un tétraèdre. thumb|Paul Sérusier, Tétraèdres, vers 1910. En géométrie, les tétraèdres (du grec tétra : quatre) sont des polyèdres de la famille des pyramides, composés de triangulaires, et . Le 3-simplexe est la représentation abstraite du tétraèdre ; dans ce modèle, les arêtes s'identifient aux 6 sous-ensembles à 2 éléments de l'ensemble des quatre sommets, et les faces aux 4 sous-ensembles à 3 éléments. Chaque sommet d'un tétraèdre est relié à tous les autres par une arête, et de même chaque face est reliée à toutes les autres par une arête.