Traitement antirefletvignette|Schéma de principe d'un traitement antireflet. On observe un phénomène d'interférence dans la couche de traitement d'une épaisseur de λ/4. Un traitement antireflet est un traitement de surface permettant de diminuer la part de lumière réfléchie et donc augmenter la part de lumière transmise au travers d'un dioptre. Il existe plusieurs méthodes : certaines consistent à déposer un assemblage lamellaire de matériaux diélectriques en surface, d'autres à effectuer une corrugation de la surface du matériau.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.
Traité de la lumière (Huygens)Dans son Traité de la lumière, écrit à Paris en 1678 mais publié douze ans plus tard lorsqu'il réside aux Pays-Bas, Christian Huygens expose ses conceptions sur la nature de la lumière qui permettent d'expliquer les lois de l'optique géométrique établies par René Descartes. À la différence d'Isaac Newton qui pensait que la lumière était composée de particules émises par la source lumineuse qui venaient frapper l'œil de l'observateur, Huygens conçoit la lumière comme formée d'ondes sphériques qui se propagent dans l'espace à la manière des ondes sonores.
Lois de Snell-Descartesvignette|upright=1.5|Les bulles de gaz dissous ou de vapeur d'eau, bien qu'elles soient transparentes, peuvent être visibles grâce aux reflets sur leur surface (réfraction et réflexion observant les lois de Snell-Descartes). Les lois de Snell-Descartes décrivent le comportement de la lumière à l'interface de deux milieux. Ces lois sont au nombre de quatre, deux pour la réflexion et deux pour la réfraction. Avec la propagation rectiligne de la lumière dans les milieux homogènes et isotropes, ces lois sont à la base de l'optique géométrique.
Miroir planUn miroir plan est un miroir dont la surface est un plan de l'espace. Il possède des propriétés optiques de stigmatisme rigoureux (l'image d'un point est un point) et d'aplanétisme (l'image d'un plan est un plan). Le miroir plan possède de nombreuses applications en optique (déviation de rayon lumineux, calibration d'instruments...) mais également dans la vie courante où il est facilement disponible (miroir décoratif ou d'utilité cosmétique par exemple). L'image d'un objet par un miroir plan est le symétrique orthogonal de l'objet par rapport au plan du miroir.
Aberration chromatiqueUne aberration chromatique est une aberration optique qui produit différentes mises au point en fonction de la longueur d'onde. On observe alors une image floue et aux contours irisés. Elle résulte de la décomposition de la lumière blanche en plusieurs bandes de couleurs. Les aberrations chromatiques ont été constatées dès les premières lunettes astronomiques et considérées comme gênantes. Isaac Newton, qui crée son propre télescope pourvu d'un miroir et donc dépourvu d'aberrations de ce type, clame, dans un premier temps, l'impossibilité physique de la correction de ces dernières.
Mécanique newtonienneLa mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Diffusion des ondesLa diffusion est le phénomène par lequel un rayonnement, comme la lumière, le son ou un faisceau de particules, est dévié dans diverses directions par une interaction avec d'autres objets. La diffusion peut être isotrope, c'est-à-dire répartie uniformément dans toutes les directions, ou anisotrope. En particulier, la fraction de l'onde incidente qui est retournée dans la direction d'où elle provient est appelée rétrodiffusion (backscatter en anglais). La diffusion peut s'effectuer avec ou sans variation de fréquence.
Coefficient de FresnelLes coefficients de Fresnel, introduits par Augustin Jean Fresnel (1788-1827), interviennent dans la description du phénomène de réflexion-réfraction des ondes électromagnétiques à l'interface entre deux milieux, dont l'indice de réfraction est différent. Ils expriment les liens entre les amplitudes des ondes réfléchies et transmises par rapport à l'amplitude de l'onde incidente. On définit le coefficient de réflexion en amplitude r et le coefficient de transmission en amplitude t du champ électrique par : où Ei, Er et Et sont les amplitudes associées respectivement au champ électrique incident, réfléchi et transmis (réfracté).
Approximation de GaussL'approximation de Gauss nommée d'après le physicien allemand Carl Friedrich Gauss, est l'approximation linéaire de l'optique géométrique obtenue dans certaines conditions appelées conditions de Gauss. Cette approximation, souvent applicable en pratique, permet de simplifier les relations mathématiques de l'optique géométrique. On obtient dans ces conditions un stigmatisme approché. Les écarts à cette approximation rencontrés dans les instruments d'optique sont appelés aberrations géométriques.