Publications associées (44)

Quantitative Methods for Omnichannel Decision-Making

Andrey Vasilyev

Omnichannel retail has emerged as the new standard in today's commerce landscape, with retailers integrating their physical and online channels to enhance the customer shopping experience. However, such integration presents significant challenges for retai ...
EPFL2023

Results and insights of the April 2022 Academic Citizens’ Assembly

Sascha Nick

This report summarizes the process, results, and insights of the Academic Citizens’ Assembly held at EPFL and online on Saturday 02.04.2022: academiccitizensassembly.ch. ...
The Academic Citizens’ Assembly2022

Proximal Point Imitation Learning

Volkan Cevher, Luca Viano, Igor Krawczuk, Angeliki Kamoutsi

This work develops new algorithms with rigorous efficiency guarantees for infinite horizon imitation learning (IL) with linear function approximation without restrictive coherence assumptions. We begin with the minimax formulation of the problem and then o ...
2022

Sampling-Based AQP in Modern Analytical Engines

Anastasia Ailamaki, Viktor Sanca

As the data volume grows, reducing the query execution times remains an elusive goal. While approximate query processing (AQP) techniques present a principled method to trade off accuracy for faster queries in analytics, the sample creation is often consid ...
ACM2022

Swinging jets

Philippe Renaud, François Gallaire, Arnaud Bertsch, Eunok Yim

This paper is associated with a video winner of a 2019 American Physical Society's Division of Fluid Dynamics (DFD) Gallery of Fluid Motion Award for work presented at the DFD Gallery of Fluid Motion. The original video is available online at the Gallery o ...
2020

Log Barriers for Safe Non-convex Black-box Optimization

Maryam Kamgarpour, Andreas Krause, Ilnura Usmanova

We address the problem of minimizing a smooth function f0(x) over a compact set D defined by smooth functional constraints fi(x)≤0, i=1,…,m given noisy value measurements of fi(x). This problem arises in safety-critical applications, where certain paramete ...
2019

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.