Résumé
En physique, le théorème de Gauss relie le flux d'un champ de vecteurs sortant d'une surface fermée aux entités à l'origine du champ (charges électriques pour le champ électrique, masses pour le champ gravitationnel). Un corollaire notable du théorème est que les entités extérieures à la surface ne contribuent pas au flux. Ce théorème, qui est en fait une application du théorème de la divergence, a été démontré indépendamment par Carl Friedrich Gauss en 1813 (pour la gravitation et dans un cas géométrique particulier), Siméon Denis Poisson en 1824 (pour l'élasticité), Mikhaïl Ostrogradski en 1826 (pour les flux de chaleur mais avec une démonstration générale), George Green en 1828 (pour des cas particuliers) et Pierre-Frédéric Sarrus en 1828 (pour les corps flottants). Le flux du champ électrique sortant d'une surface fermée est proportionnel à la charge électrique totale contenue dans le volume délimité par cette surface. La constante de proportionnalité est , où est la permittivité diélectrique du vide. Il est toujours possible de calculer le champ électrique généré par une distribution de charge en intégrant la loi de Coulomb sur l'espace. Cette méthode étant souvent impraticable, le théorème de Gauss nous permet de simplifier ce calcul dans les cas ou répartition de charge possède des symétries permettant de choisir une surface de Gauss commode. La méthode générale pour trouver le champ électrique en un point de l'espace peut être résumée comme suit. Un cas simple ou le théorème de Gauss permet de faciliter ce calcul est la boule uniformément chargée. On considère une boule uniformément chargée de rayon et de charge totale . On peut la représenter par une distribution de charge avec . En coordonnées sphériques, , on remarque que le système est invariant par rotation d'angle quelconques, on a donc une symétrie sphérique. Le champ électrique généré par cette distribution de charges ne dépendra donc que de la distance au centre de la sphère donc .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (15)
PHYS-201(b): General physics : electromagnetism
Introduction à la mécanique des fluides, à l'électromagnétisme et aux phénomènes ondulatoires
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
PHYS-201(a): General physics : electromagnetism
Le cours traite des concepts de l'électromagnétisme et des ondes électromagnétiques.
Afficher plus
Séances de cours associées (120)
Fondamentaux de l'électricité
Couvre les concepts fondamentaux de l'électricité, y compris les champs électriques, les différences de potentiel et les conducteurs.
Théorie quantique des champs II: Maxwell Field et Symmétries
Couvre le champ Maxwell, les symétries et les changements dans les dérivés locaux et covariants.
Puissance du champ électrique en dehors des conducteurs
Explore la force du champ électrique à l'extérieur des conducteurs et les applications de capacité dépendant de la géométrie, y compris les capteurs de pression et le stockage d'énergie.
Afficher plus
Publications associées (24)

Time-reversal symmetry breaking Abelian chiral spin liquid in Mott phases of three-component fermions on the triangular lattice

Frédéric Mila, Karlo Penc, Pierre Marcel Nataf, Miklos Lajko, Carolin Boos

We provide numerical evidence in favor of spontaneous chiral symmetry breaking and the concomitant appearance of an Abelian chiral spin liquid for three-component fermions on the triangular lattice described by an SU(3) symmetric Hubbard model with hopping ...
AMER PHYSICAL SOC2020
Afficher plus
Concepts associés (25)
Électrostatique
vignette|Billes de polystyrène collées sur la fourrure d'un chat par l'électricité statique. framed|Morceaux de papier attirés par un CD chargé d'électricité statique. vignette|Foudre engendrant un éclair lumineux au-dessus d'Oradea en Roumanie. Lélectrostatique est la branche de la physique qui étudie les phénomènes créés par des charges électriques statiques pour l'observateur. Les lois obtenues peuvent se généraliser à des systèmes variables (quasi-électrostatique) pourvu que la distribution des charges puisse être considérée comme en équilibre à chaque instant.
Densité de charge
La densité de charge électrique désigne la quantité de charge électrique par unité d'espace. Selon que l'on considère un problème à 1, 2 ou 3 dimensions, c'est-à-dire une ligne, une surface ou un volume, on parlera de densité linéique, surfacique ou volumique de charge. Leurs unités sont respectivement le coulomb par mètre (), le coulomb par mètre carré () et le coulomb par mètre cube () dans le Système international. Comme il existe des charges négatives comme des charges positives, la densité de charge peut prendre des valeurs négatives.
Flux (physique)
En physique, un flux est une intégrale de surface de la composante normale d'un champ vectoriel sur une surface donnée. Le champ vectoriel associé est souvent nommé densité de flux. Cette définition rejoint celle du flux en mathématiques. Si dans certains domaines de la physique, le flux est également un débit, lié à un déplacement de matière ou à un transfert d'énergie, ce n'est pas toujours le cas : on aime malgré tout se représenter un flux comme caractéristique de ce qui s'écoule le long des lignes de champs à travers la frontière que marque la surface.
Afficher plus