MICRO-511: Image processing IIntroduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping using Jupyter notebooks. Application to real-world examples in
PHYS-332: Computational physics IIIThis course teaches the students practical skills needed for solving modern physics problems by means of computation. A number of examples illustrate the utility of numerical computations in various d
EE-559: Deep learningThis course explores how to design reliable discriminative and generative neural networks, the ethics of data acquisition and model deployment, as well as modern multi-modal models.
PHYS-757: Axiomatic Quantum Field TheoryPresentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).
Proofs of
COM-202: Signal processingSignal processing theory and applications: discrete and continuous time signals; Fourier analysis, DFT, DTFT,
CTFT, FFT, STFT; linear time invariant systems; filter design and adaptive filtering; samp
MICRO-311(b): Signals and systems II (for SV)Ce cours aborde la théorie des systèmes linéaires discrets invariants par décalage (LID). Leurs propriétés et caractéristiques fondamentales y sont discutées, ainsi que les outils fondamentaux permett
ME-390: Foundations of artificial intelligenceThis course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
MATH-203(b): Analysis IIILe cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour
résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.