Learn the basis of Lebesgue integration and Fourier analysis
Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping using Jupyter notebooks. Application to real-world examples in
Dans ce cours, nous présentons les méthodes de base du traitement des signaux.
This course teaches the students practical skills needed for solving modern physics problems by means of computation. A number of examples illustrate the utility of numerical computations in various d
This course explores how to design reliable discriminative and generative neural networks, the ethics of data acquisition and model deployment, as well as modern multi-modal models.
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...).
Proofs of
Signal processing theory and applications: discrete and continuous time signals; Fourier analysis, DFT, DTFT,
CTFT, FFT, STFT; linear time invariant systems; filter design and adaptive filtering; samp
Ce cours aborde la théorie des systèmes linéaires discrets invariants par décalage (LID). Leurs propriétés et caractéristiques fondamentales y sont discutées, ainsi que les outils fondamentaux permett
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
Le cours étudie les concepts fondamentaux de l'analyse vectorielle et l'analyse de Fourier en vue de leur utilisation pour
résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.