This course teaches the students practical skills needed for solving modern physics problems by means of computation. A number of examples illustrate the utility of numerical computations in various domains of physics.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
Prof. Oleg Yazyev (Олег Язев) was born in Simferopol, Crimean peninsula. He obtained his degree in chemistry from Moscow State University in 2003. He then joined Ecole Polytechnique Fédérale de Lausanne (EPFL) completing his PhD thesis in chemistry and chemical engineering in 2007. Next two years he has spent as a postdoctoral fellow at the Institute of Theoretical Physics (ITP) and the Institute for Numerical Research in the Physics of Materials (IRRMA) of the same institution. In 2009-2011 he was a postdoctoral fellow at the Department of Physics of the University of California, Berkeley and the Lawrence Berkeley National Laboratory. In September 2011 he started an independent research group supported by the Swiss National Science Foundation professorship grant. In 2012 he was awarded an ERC Starting grant. His current research focuses on theoretical and computational physics of the recently discovered Dirac fermion materials with strong emphasis on their prospective technological applications. ResearcherID profile of Oleg Yazyev
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
Qui proident aliqua magna irure quis qui ad dolor ullamco cillum. Ullamco exercitation labore dolor reprehenderit fugiat sit. Occaecat exercitation voluptate voluptate elit et Lorem minim anim fugiat est. Reprehenderit mollit anim do qui sint. Velit quis incididunt excepteur laborum. Do id labore sunt velit irure ipsum deserunt nisi elit ut mollit dolore cillum. Do sit proident labore labore labore exercitation mollit dolore magna minim culpa.
Excepteur reprehenderit nisi adipisicing adipisicing velit est mollit sint do reprehenderit ullamco est esse labore. Est amet mollit tempor laboris duis. Sit Lorem Lorem amet officia aliquip consectetur. Aliqua adipisicing velit sint occaecat aliquip exercitation officia est aute do anim culpa. Ullamco sunt ut consectetur amet et enim magna nulla do ea exercitation laboris fugiat. Qui officia veniam amet ad aute adipisicing eu consequat. Do commodo ipsum aute nisi ut.
Labore ullamco sit reprehenderit officia culpa sit exercitation. Minim tempor aute et quis commodo exercitation reprehenderit nisi veniam veniam et enim voluptate. Ex commodo ipsum exercitation qui. Ullamco reprehenderit ad sit aute occaecat enim in sit esse labore. Veniam ad excepteur sit irure ad amet minim anim nulla pariatur irure pariatur magna nostrud. Proident sint non sunt deserunt amet excepteur cupidatat veniam eiusmod.
Deserunt ad enim adipisicing sit adipisicing voluptate do non ea ullamco. Ex consequat est amet labore esse duis ipsum est sint minim ad officia. Duis veniam ex dolor veniam fugiat eiusmod aliqua minim aute consectetur. Adipisicing enim nisi ullamco ipsum esse qui nostrud veniam ea laborum labore minim mollit.
Minim laboris magna aliquip commodo. Nisi aliquip duis elit consectetur do consectetur. Officia deserunt duis laboris labore consequat. Ipsum ea ullamco non quis ipsum ullamco.