A centripetal force (from Latin centrum, "center" and petere, "to seek") is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.
One common example involving centripetal force is the case in which a body moves with uniform speed along a circular path. The centripetal force is directed at right angles to the motion and also along the radius towards the centre of the circular path. The mathematical description was derived in 1659 by the Dutch physicist Christiaan Huygens.
From the kinematics of curved motion it is known that an object moving at tangential speed v along a path with radius of curvature r accelerates toward the center of curvature at a rate
Here, is the centripetal acceleration and is the difference between the velocity vectors at and .
By Newton's second law, the cause of acceleration is a net force acting on the object, which is proportional to its mass m and its acceleration. The force, usually referred to as a centripetal force, has a magnitude
and is, like centripetal acceleration, directed toward the center of curvature of the object's trajectory.
The centripetal acceleration can be inferred from the diagram of the velocity vectors at two instances. In the case of uniform circular motion the velocities have constant magnitude. Because each one is perpendicular to its respective position vector, simple vector subtraction implies two similar isosceles triangles with congruent angles – one comprising a base of and a leg length of , and the other a base of (position vector difference) and a leg length of :
Therefore, can be substituted with :
The direction of the force is toward the center of the circle in which the object is moving, or the osculating circle (the circle that best fits the local path of the object, if the path is not circular).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, unless acted upon by a force. When a body is acted upon by a force, the time rate of change of its momentum equals the force. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The "classical" in "classical mechanics" does not refer classical antiquity, as it might in, say, classical architecture.
In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parallel to the axis of rotation and passing through the coordinate system's origin. If the axis of rotation passes through the coordinate system's origin, the centrifugal force is directed radially outwards from that axis.
Explores Newton's laws of motion, fundamental forces in nature, and the unification of interactions.
, , ,
Background: Static posterior subluxation of the humeral head (SPSH) results in glenohumeral osteoarthritis. Treatment strategies for SPSH with or without resulting osteoarthritis remain challenging. There is growing interest in evaluating the rotator cuff ...
The log law of the wall, joining the inner, near-wall mean velocity profile (MVP) in wall-bounded turbulent flows to the outer region, has been a permanent fixture of turbulence research for over hundred years, but there is still no general agreement on th ...
Dynamical system (DS) based motion planning offers collision-free motion, with closed-loop reactivity thanks to their analytical expression. It ensures that obstacles are not penetrated by reshaping a nominal DS through matrix modulation, which is construc ...