Problème de comptageEn théorie de la complexité et en théorie de la calculabilité, un problème de comptage est un type particulier de problème algorithmique. Étant donné un problème algorithmique consistant à trouver une solution, on peut définir le problème de comptage associé, qui consiste à calculer le nombre de solutions. Des classes de complexité spécifiques existent pour les problèmes de comptage, dont la plus connue #P qui est l'analogue de la classe NP pour les problèmes de décision.
Hamiltonian path problemIn the mathematical field of graph theory the Hamiltonian path problem and the Hamiltonian cycle problem are problems of determining whether a Hamiltonian path (a path in an undirected or directed graph that visits each vertex exactly once) or a Hamiltonian cycle exists in a given graph (whether directed or undirected). Both problems are NP-complete.
Analyse amortieEn informatique, l'analyse amortie est une méthode d'évaluation de la complexité temporelle des opérations sur une structure de données. Cette analyse résulte en une classification des algorithmes et conduit à une théorie spécifique de la complexité des algorithmes que l'on appelle complexité amortie. L'analyse amortie consiste essentiellement à majorer le coût cumulé d'une suite d'opérations pour attribuer à chaque opération la moyenne de cette majoration, en prenant en compte le fait que les cas chers surviennent rarement et isolément et compensent les cas bon marché.
Quantum Turing machineA quantum Turing machine (QTM) or universal quantum computer is an abstract machine used to model the effects of a quantum computer. It provides a simple model that captures all of the power of quantum computation—that is, any quantum algorithm can be expressed formally as a particular quantum Turing machine. However, the computationally equivalent quantum circuit is a more common model. Quantum Turing machines can be related to classical and probabilistic Turing machines in a framework based on transition matrices.
Random access machineEn informatique théorique, la machine RAM, pour Random Access Machine, est un modèle abstrait d'ordinateur destiné à étudier des algorithmes. une machine qui ne fait qu'effectuer des calculs sur des nombres, codés sous la forme d'une suite de symboles. Ces calculs vont donc transformer une suite de symboles en une autre. Les suites de symboles manipulées sont appelées des données, tandis que les calculs qui transforment une chaîne de « caractères » en une autre sont appelées des instructions.
Exponential hierarchyIn computational complexity theory, the exponential hierarchy is a hierarchy of complexity classes that is an exponential time analogue of the polynomial hierarchy. As elsewhere in complexity theory, “exponential” is used in two different meanings (linear exponential bounds for a constant c, and full exponential bounds ), leading to two versions of the exponential hierarchy. This hierarchy is sometimes also referred to as the weak exponential hierarchy, to differentiate it from the strong exponential hierarchy.
Fonction constructibleEn théorie de la complexité, une fonction constructible en temps est une fonction f des entiers naturels vers les entiers naturels, avec la propriété que f(n) peut être calculée à partir de n par une machine de Turing qui se termine en un temps du même ordre de grandeur que f(n). Le but de cette définition est d'exclure les fonctions qui n'apportent pas de borne supérieure sur le temps d'exécution. Une définition similaire pour la complexité en espace existe et introduit la notion de fonction constructible en espace.
P/polyEn informatique théorique, plus précisément en théorie de la complexité, P/poly est la classe de problèmes de décision décidés par une famille de circuits booléens de tailles polynomiales. Cette classe a été introduite par Karp et Lipton en 1980. Cette classe est importante, car comme P est incluse dans P/poly, si on démontre que NP ⊈ P/poly, alors on résout le problème ouvert P est différent de NP. Il y a deux définitions équivalentes, la première donnée avec le modèle de calcul des circuits booléens, l'autre avec des machines de Turing.