In the mathematical field of graph theory the Hamiltonian path problem and the Hamiltonian cycle problem are problems of determining whether a Hamiltonian path (a path in an undirected or directed graph that visits each vertex exactly once) or a Hamiltonian cycle exists in a given graph (whether directed or undirected). Both problems are NP-complete.
The Hamiltonian cycle problem is a special case of the travelling salesman problem, obtained by setting the distance between two cities to one if they are adjacent and two otherwise, and verifying that the total distance travelled is equal to n (if so, the route is a Hamiltonian circuit; if there is no Hamiltonian circuit then the shortest route will be longer).
The problems of finding a Hamiltonian path and a Hamiltonian cycle can be related as follows:
In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be significantly slower (in the worst case, as a function of the number of vertices) than finding a Hamiltonian cycle.
In the other direction, the Hamiltonian cycle problem for a graph G is equivalent to the Hamiltonian path problem in the graph H obtained by adding terminal (degree-one) vertices s and t attached respectively to a vertex v of G and to v', a cleaved copy of v which gives v' the same neighbourhood as v. The Hamiltonian path in H running through vertices s-v-x-\cdots-y-v'-t corresponds to the Hamiltonian cycle in G running through v-x-\cdots-y(-v).
There are n! different sequences of vertices that might be Hamiltonian paths in a given n-vertex graph (and are, in a complete graph), so a brute force search algorithm that tests all possible sequences would be very slow.
An early exact algorithm for finding a Hamiltonian cycle on a directed graph was the enumerative algorithm of Martello.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path.
En théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Dans le domaine mathématique de la théorie des graphes, un arbre couvrant d'un graphe non orienté et connexe est un arbre inclus dans ce graphe et qui connecte tous les sommets du graphe. De façon équivalente, c'est un sous-graphe acyclique maximal, ou encore, un sous-graphe couvrant connexe minimal. Dans certains cas, le nombre d'arbres couvrants d'un graphe connexe est facilement calculable. Par exemple, si lui-même est un arbre, alors , tandis que si est un n-cycle, alors .
Examine les problèmes de NP, la coloration des graphiques, l'optimisation des chemins et les distinctions de complexité computationnelle dans les classes P et NP.
Gruber et al. (2022) offered a framework how to explain "Physical time within human time", solving the 'two times problem: Here, I am asking whether such a problem exists at all. To question the question, I will appeal to neurobiological, evolutionary, and ...
Brill2024
, ,
Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in r ...
New York2023
, ,
Finding cycles in directed graphs enables important applications in various domains such as finance, biology, chemistry, and network science. However, as the size of graph datasets continues to grow, it becomes increasingly difficult to discover cycles wit ...