Résumé
In mathematics, particularly linear algebra, an orthogonal basis for an inner product space is a basis for whose vectors are mutually orthogonal. If the vectors of an orthogonal basis are normalized, the resulting basis is an orthonormal basis. Any orthogonal basis can be used to define a system of orthogonal coordinates Orthogonal (not necessarily orthonormal) bases are important due to their appearance from curvilinear orthogonal coordinates in Euclidean spaces, as well as in Riemannian and pseudo-Riemannian manifolds. In functional analysis, an orthogonal basis is any basis obtained from an orthonormal basis (or Hilbert basis) using multiplication by nonzero scalars. The concept of an orthogonal basis is applicable to a vector space (over any field) equipped with a symmetric bilinear form where orthogonality of two vectors and means For an orthogonal basis where is a quadratic form associated with (in an inner product space, ). Hence for an orthogonal basis where and are components of and in the basis. The concept of orthogonality may be extended to a vector space (over any field) equipped with a quadratic form .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.