In computability theory Post's theorem, named after Emil Post, describes the connection between the arithmetical hierarchy and the Turing degrees.
Arithmetical hierarchy#Relation to Turing machines
The statement of Post's theorem uses several concepts relating to definability and recursion theory. This section gives a brief overview of these concepts, which are covered in depth in their respective articles.
The arithmetical hierarchy classifies certain sets of natural numbers that are definable in the language of Peano arithmetic. A formula is said to be if it is an existential statement in prenex normal form (all quantifiers at the front) with alternations between existential and universal quantifiers applied to a formula with bounded quantifiers only. Formally a formula in the language of Peano arithmetic is a formula if it is of the form
where contains only bounded quantifiers and Q is if m is even and if m is odd.
A set of natural numbers is said to be if it is definable by a formula, that is, if there is a formula such that each number is in if and only if holds. It is known that if a set is then it is for any , but for each m there is a set that is not . Thus the number of quantifier alternations required to define a set gives a measure of the complexity of the set.
Post's theorem uses the relativized arithmetical hierarchy as well as the unrelativized hierarchy just defined. A set of natural numbers is said to be relative to a set , written , if is definable by a formula in an extended language that includes a predicate for membership in .
While the arithmetical hierarchy measures definability of sets of natural numbers, Turing degrees measure the level of uncomputability of sets of natural numbers. A set is said to be Turing reducible to a set , written , if there is an oracle Turing machine that, given an oracle for , computes the characteristic function of .
The Turing jump of a set is a form of the Halting problem relative to . Given a set , the Turing jump is the set of indices of oracle Turing machines that halt on input when run with oracle .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En théorie de la calculabilité, le saut de Turing, du nom d'Alan Turing, est une opération qui attribue à chaque problème de décision un problème de décision plus difficile avec la propriété que n'est pas décidable par une machine à oracle relative à . Le saut est appelé opérateur de saut car il augmente le degré de Turing du problème . Autrement dit, le problème n'est pas à . Le théorème de Post établit une relation entre l'opérateur de saut de Turing et la hiérarchie arithmétique des ensembles de nombres naturels.
vignette|L'animation illustre une machine impossible : il n'y a pas de machine qui lit n'importe quel code source d'un programme et dit si son exécution termine ou non. En théorie de la calculabilité, le problème de l'arrêt est le problème de décision qui détermine, à partir d'une description d'un programme informatique, et d'une entrée, si le programme s'arrête avec cette entrée ou non.
In computability theory, a Turing reduction from a decision problem to a decision problem is an oracle machine which decides problem given an oracle for (Rogers 1967, Soare 1987). It can be understood as an algorithm that could be used to solve if it had available to it a subroutine for solving . The concept can be analogously applied to function problems. If a Turing reduction from to exists, then every algorithm for can be used to produce an algorithm for , by inserting the algorithm for at each place where the oracle machine computing queries the oracle for .
In computability theory a variety of combinatorial systems are encountered (word problems, production systems) that exhibit undecidability properties. Here we seek such structures in the realm of Analysis, more specifically in the area of Fourier Analysis. ...