In computability theory Post's theorem, named after Emil Post, describes the connection between the arithmetical hierarchy and the Turing degrees.
Arithmetical hierarchy#Relation to Turing machines
The statement of Post's theorem uses several concepts relating to definability and recursion theory. This section gives a brief overview of these concepts, which are covered in depth in their respective articles.
The arithmetical hierarchy classifies certain sets of natural numbers that are definable in the language of Peano arithmetic. A formula is said to be if it is an existential statement in prenex normal form (all quantifiers at the front) with alternations between existential and universal quantifiers applied to a formula with bounded quantifiers only. Formally a formula in the language of Peano arithmetic is a formula if it is of the form
where contains only bounded quantifiers and Q is if m is even and if m is odd.
A set of natural numbers is said to be if it is definable by a formula, that is, if there is a formula such that each number is in if and only if holds. It is known that if a set is then it is for any , but for each m there is a set that is not . Thus the number of quantifier alternations required to define a set gives a measure of the complexity of the set.
Post's theorem uses the relativized arithmetical hierarchy as well as the unrelativized hierarchy just defined. A set of natural numbers is said to be relative to a set , written , if is definable by a formula in an extended language that includes a predicate for membership in .
While the arithmetical hierarchy measures definability of sets of natural numbers, Turing degrees measure the level of uncomputability of sets of natural numbers. A set is said to be Turing reducible to a set , written , if there is an oracle Turing machine that, given an oracle for , computes the characteristic function of .
The Turing jump of a set is a form of the Halting problem relative to . Given a set , the Turing jump is the set of indices of oracle Turing machines that halt on input when run with oracle .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In computability theory, the Turing jump or Turing jump operator, named for Alan Turing, is an operation that assigns to each decision problem X a successively harder decision problem X′ with the property that X′ is not decidable by an oracle machine with an oracle for X. The operator is called a jump operator because it increases the Turing degree of the problem X. That is, the problem X′ is not Turing-reducible to X. Post's theorem establishes a relationship between the Turing jump operator and the arithmetical hierarchy of sets of natural numbers.
In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. The halting problem is undecidable, meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs. A key part of the formal statement of the problem is a mathematical definition of a computer and program, usually via a Turing machine.
In computability theory, a Turing reduction from a decision problem to a decision problem is an oracle machine which decides problem given an oracle for (Rogers 1967, Soare 1987). It can be understood as an algorithm that could be used to solve if it had available to it a subroutine for solving . The concept can be analogously applied to function problems. If a Turing reduction from to exists, then every algorithm for can be used to produce an algorithm for , by inserting the algorithm for at each place where the oracle machine computing queries the oracle for .
In computability theory a variety of combinatorial systems are encountered (word problems, production systems) that exhibit undecidability properties. Here we seek such structures in the realm of Analysis, more specifically in the area of Fourier Analysis. ...