Saut de TuringEn théorie de la calculabilité, le saut de Turing, du nom d'Alan Turing, est une opération qui attribue à chaque problème de décision un problème de décision plus difficile avec la propriété que n'est pas décidable par une machine à oracle relative à . Le saut est appelé opérateur de saut car il augmente le degré de Turing du problème . Autrement dit, le problème n'est pas à . Le théorème de Post établit une relation entre l'opérateur de saut de Turing et la hiérarchie arithmétique des ensembles de nombres naturels.
Problème de l'arrêtvignette|L'animation illustre une machine impossible : il n'y a pas de machine qui lit n'importe quel code source d'un programme et dit si son exécution termine ou non. En théorie de la calculabilité, le problème de l'arrêt est le problème de décision qui détermine, à partir d'une description d'un programme informatique, et d'une entrée, si le programme s'arrête avec cette entrée ou non.
Turing reductionIn computability theory, a Turing reduction from a decision problem to a decision problem is an oracle machine which decides problem given an oracle for (Rogers 1967, Soare 1987). It can be understood as an algorithm that could be used to solve if it had available to it a subroutine for solving . The concept can be analogously applied to function problems. If a Turing reduction from to exists, then every algorithm for can be used to produce an algorithm for , by inserting the algorithm for at each place where the oracle machine computing queries the oracle for .
Degré de TuringEn informatique et en logique mathématique, le degré de Turing (nommé d'après Alan Turing) ou le degré d'insolubilité d'un ensemble d'entiers naturels mesure le niveau d'insolubilité algorithmique de l'ensemble. Le concept de degré de Turing est fondamental dans la théorie de la calculabilité, où des ensembles d'entiers naturels sont souvent considérés comme des problèmes de décision. Le degré de Turing d'un ensemble révèle combien il est difficile de résoudre le problème de décision associé à cet ensemble, à savoir, déterminer si un nombre arbitraire est dans l'ensemble donné.
Hiérarchie arithmétiquethumb|Illustration de la hiérarchie arithmétique. En logique mathématique, plus particulièrement en théorie de la calculabilité, la hiérarchie arithmétique, définie par Stephen Cole Kleene, est une hiérarchie des sous-ensembles de l'ensemble N des entiers naturels définissables dans le langage du premier ordre de l'arithmétique de Peano. Un ensemble d'entiers est classé suivant les alternances de quantificateurs d'une formule sous forme prénexe qui permet de le définir.
Théorie de la calculabilitéLa théorie de la calculabilité (appelée aussi parfois théorie de la récursion) est un domaine de la logique mathématique et de l'informatique théorique. La calculabilité (parfois appelée « computationnalité », de l'anglais computability) cherche d'une part à identifier la classe des fonctions qui peuvent être calculées à l'aide d'un algorithme et d'autre part à appliquer ces concepts à des questions fondamentales des mathématiques. Une bonne appréhension de ce qui est calculable et de ce qui ne l'est pas permet de voir les limites des problèmes que peuvent résoudre les ordinateurs.
Récursivement énumérableEn théorie de la calculabilité, un ensemble d'entiers naturels est récursivement énumérable ou semi-décidable si : il existe un algorithme qui prend un entier naturel en entrée, et qui s'arrête exactement sur les entiers de ; ou, de manière équivalente : il existe un procédé algorithmique qui, au cours de son fonctionnement, énumère en sortie tous les entiers de et seulement ceux-ci (il est possible, et même nécessaire quand est infini, qu'il ne s'arrête pas).
Machine de TuringEn informatique théorique, une machine de Turing est un modèle abstrait du fonctionnement des appareils mécaniques de calcul, tel un ordinateur. Ce modèle a été imaginé par Alan Turing en 1936, en vue de donner une définition précise au concept d’algorithme ou de « procédure mécanique ». Il est toujours largement utilisé en informatique théorique, en particulier dans les domaines de la complexité algorithmique et de la calculabilité.