Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Explore les défis de l'informatique distribuée, de la croissance des données et des types de données, en mettant l'accent sur la bataille contre les trois V dans le Big Data.
Explore les stratégies d'optimisation pour les accélérateurs d'apprentissage en profondeur, en mettant l'accent sur la réduction des mouvements de données grâce au batching, à l'optimisation des flux de données et à la compression.
Couvre la résolution, l'hydrologie, les SIG, les connexions, les transitions et la validation des bases de données à l'aide de divers ensembles de données.
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Explore l'hydraulique fluviale, la modélisation et l'étalonnage en utilisant une approche semi-distribuée pour des prévisions précises et la gestion des ressources en eau.
Explore linférence de vraisemblance maximale, comparant les modèles basés sur les ratios de vraisemblance et démontrant avec un exemple de pièce de monnaie.