A space–time trade-off, also known as time–memory trade-off or the algorithmic space-time continuum in computer science is a case where an algorithm or program trades increased space usage with decreased time. Here, space refers to the data storage consumed in performing a given task (RAM, HDD, etc), and time refers to the time consumed in performing a given task (computation time or response time).
The utility of a given space–time tradeoff is affected by related fixed and variable costs (of, e.g., CPU speed, storage space), and is subject to diminishing returns.
Biological usage of time–memory tradeoffs can be seen in the earlier stages of animal behavior. Using stored knowledge or encoding stimuli reactions as "instincts" in the DNA avoids the need for "calculation" in time-critical situations. More specific to computers, look-up tables have been implemented since the very earliest operating systems.
In 1980 Martin Hellman first proposed using a time–memory tradeoff for cryptanalysis.
A common situation is an algorithm involving a lookup table: an implementation can include the entire table, which reduces computing time, but increases the amount of memory needed, or it can compute table entries as needed, increasing computing time, but reducing memory requirements.
Database Management Systems offer the capability to create Database index data structures. Indexes improve the speed of lookup operations at the cost of additional space. Without indexes, time-consuming Full table scan operations are sometimes required to locate desired data.
A space–time trade off can be applied to the problem of data storage. If data is stored uncompressed, it takes more space but access takes less time than if the data were stored compressed (since compressing the data reduces the amount of space it takes, but it takes time to run the decompression algorithm). Depending on the particular instance of the problem, either way is practical.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Une table de correspondance (aussi appelé tableau de correspondances, ou Lookup Table (LUT) en anglais) est un terme informatique et électronique désignant une liste d'association de valeurs. Elle se comporte sur le même modèle qu'une table de vérité désignant sa sortie de manière unique en fonction de ses entrées et du contenu de la table. Il s'agit d'une structure de données stockée en mémoire, employée pour remplacer un calcul par une opération plus simple de consultation.
The research community has been making significant progress in hardware implementation, numerical computing and algorithm development for optimization-based control. However, there are two key challenges that still have to be overcome for optimization-base ...
Various forms of real-world data, such as social, financial, and biological networks, can berepresented using graphs. An efficient method of analysing this type of data is to extractsubgraph patterns, such as cliques, cycles, and motifs, from graphs. For i ...
EPFL2023
, ,
Face diarization, i.e. face tracking and clustering within video documents, is useful and important for video indexing and fast browsing but it is also a difficult and time consuming task. In this paper, we address the tracking aspect and propose a novel a ...