A space–time trade-off, also known as time–memory trade-off or the algorithmic space-time continuum in computer science is a case where an algorithm or program trades increased space usage with decreased time. Here, space refers to the data storage consumed in performing a given task (RAM, HDD, etc), and time refers to the time consumed in performing a given task (computation time or response time). The utility of a given space–time tradeoff is affected by related fixed and variable costs (of, e.g., CPU speed, storage space), and is subject to diminishing returns. Biological usage of time–memory tradeoffs can be seen in the earlier stages of animal behavior. Using stored knowledge or encoding stimuli reactions as "instincts" in the DNA avoids the need for "calculation" in time-critical situations. More specific to computers, look-up tables have been implemented since the very earliest operating systems. In 1980 Martin Hellman first proposed using a time–memory tradeoff for cryptanalysis. A common situation is an algorithm involving a lookup table: an implementation can include the entire table, which reduces computing time, but increases the amount of memory needed, or it can compute table entries as needed, increasing computing time, but reducing memory requirements. Database Management Systems offer the capability to create Database index data structures. Indexes improve the speed of lookup operations at the cost of additional space. Without indexes, time-consuming Full table scan operations are sometimes required to locate desired data. A space–time trade off can be applied to the problem of data storage. If data is stored uncompressed, it takes more space but access takes less time than if the data were stored compressed (since compressing the data reduces the amount of space it takes, but it takes time to run the decompression algorithm). Depending on the particular instance of the problem, either way is practical.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Related publications (6)

Acceleration of graph pattern mining and applications to financial crime

Jovan Blanusa

Various forms of real-world data, such as social, financial, and biological networks, can berepresented using graphs. An efficient method of analysing this type of data is to extractsubgraph patterns, such as cliques, cycles, and motifs, from graphs. For i ...
EPFL2023

Optimization Methods for Control: From Embedded Programmable Hardware to Data-Driven Process Optimization

Harsh Ambarishkumar Shukla

The research community has been making significant progress in hardware implementation, numerical computing and algorithm development for optimization-based control. However, there are two key challenges that still have to be overcome for optimization-base ...
EPFL2021

Efficient and Accurate Tracking for Face Diarization via Periodical Detection

Jean-Marc Odobez, Alexandre Heili, Di Wu

Face diarization, i.e. face tracking and clustering within video documents, is useful and important for video indexing and fast browsing but it is also a difficult and time consuming task. In this paper, we address the tracking aspect and propose a novel a ...
IEEE2016
Show more
Related concepts (1)
Lookup table
In computer science, a lookup table (LUT) is an array that replaces runtime computation with a simpler array indexing operation. The process is termed as "direct addressing" and LUTs differ from hash tables in a way that, to retrieve a value with key , a hash table would store the value in the slot where is a hash function i.e. is used to compute the slot, while in the case of LUT, the value is stored in slot , thus directly addressable.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.