Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The vulnerability of deep neural networks to adversarial attacks has posed significant threats to real-world applications, especially security-critical ones. Given a well-trained model, slight modifications to the input samples can cause drastic changes in ...
Fine-tuning pre-trained transformer-based language models such as BERT has become a common practice dominating leaderboards across various NLP benchmarks. Despite the strong empirical performance of fine-tuned models, fine-tuning is an unstable process: tr ...
We introduce the "continuized" Nesterov acceleration, a close variant of Nesterov acceleration whose variables are indexed by a continuous time parameter. The two variables continuously mix following a linear ordinary differential equation and take gradien ...
An animals' ability to learn how to make decisions based on sensory evidence is often well described by Reinforcement Learning (RL) frameworks. These frameworks, however, typically apply to event-based representations and lack the explicit and fine-grained ...
We consider one-dimensional excited random walks (ERWs) with i.i.d. Markovian cookie stacks in the non-boundary recurrent regime. We prove that under diffusive scaling such an ERW converges in the standard Skorokhod topology to a multiple of Brownian motio ...
We study generalization properties of random features (RF) regression in high dimensions optimized by stochastic gradient descent (SGD) in under-/overparameterized regime. In this work, we derive precise non-asymptotic error bounds of RF regression under b ...
This paper examines the minimization of the cost for an expected random production output, given an assembly of finished goods from two random inputs, matched in two categories. We describe the optimal input portfolio, first using the standard normal appro ...
In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of output quantities of complex differential models with random input data, using gradient-based approaches in combination with the Multi-Level Monte Carlo (MLMC) method ...
Modern digital connectivity has necessitated the creation of robust methods for securely storing and transferring data. At the heart of all security infrastructure is the random number generator (RNG). While random numbers find use in a variety of applicat ...
Electric vehicle charging facilities offer their capacity constrained electric charge and parking to users for a fee. As electric vehicle adoption grows, so too does the potential for excessive resource utilization. In this paper, we study how prices set b ...