Cours associés (22)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
CS-433: Machine learning
Machine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
ME-390: Foundations of artificial intelligence
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
PHYS-754: Lecture series on scientific machine learning
This lecture presents ongoing work on how scientific questions can be tackled using machine learning. Machine learning enables extracting knowledge from data computationally and in an automatized way.
EE-566: Adaptation and learning
In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
BIO-322: Introduction to machine learning for bioengineers
Students understand basic concepts and methods of machine learning. They can describe them in mathematical terms and can apply them to data using a high-level programming language (julia/python/R).
BIO-369: Randomness and information in biological data
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
MGT-418: Convex optimization
This course introduces the theory and application of modern convex optimization from an engineering perspective.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.