Cours associés (22)
EE-311: Fundamentals of machine learning
Ce cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
EE-556: Mathematics of data: from theory to computation
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
CS-431: Introduction to natural language processing
The objective of this course is to present the main models, formalisms and algorithms necessary for the development of applications in the field of natural language information processing. The concept
CS-450: Algorithms II
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
CIVIL-226: Introduction to machine learning for engineers
Machine learning is a sub-field of Artificial Intelligence that allows computers to learn from data, identify patterns and make predictions. As a fundamental building block of the Computational Thinki
CS-423: Distributed information systems
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
BIOENG-456: Controlling behavior in animals and robots
Students will acquire an integrative view on biological and artificial algorithms for controlling autonomous behaviors. Students will synthesize and apply this knowledge in oral presentations and comp
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
ME-411: Mechanics of slender structures
Analysis of the mechanical response and deformation of slender structural elements.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.