Résumé
In psychometrics, predictive validity is the extent to which a score on a scale or test predicts scores on some criterion measure. For example, the validity of a cognitive test for job performance is the correlation between test scores and, for example, supervisor performance ratings. Such a cognitive test would have predictive validity if the observed correlation were statistically significant. Predictive validity shares similarities with concurrent validity in that both are generally measured as correlations between a test and some criterion measure. In a study of concurrent validity the test is administered at the same time as the criterion is collected. This is a common method of developing validity evidence for employment tests: A test is administered to incumbent employees, then a rating of those employees' job performance is, or has already been, obtained independently of the test (often, as noted above, in the form of a supervisor rating). Note the possibility for restriction of range both in test scores and performance scores: The incumbent employees are likely to be a more homogeneous and higher performing group than the applicant pool at large. In a strict study of predictive validity, the test scores are collected first. Then, at some later time the criterion measure is collected. Thus, for predictive validity, the employment test example is slightly different: Tests are administered, perhaps to job applicants, and then after those individuals work in the job for a year, their test scores are correlated with their first year job performance scores. Another relevant example is SAT scores: These are validated by collecting the scores during the examinee's senior year and high school and then waiting a year (or more) to correlate the scores with their first year college grade point average. Thus predictive validity provides somewhat more useful data about test validity because it has greater fidelity to the real situation in which the test will be used. After all, most tests are administered to find out something about future behavior.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
EE-110: Logic systems (for MT)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
ME-469: Nano-scale heat transfer
In this course we study heat transfer (and energy conversion) from a microscopic perspective. First we focus on understanding why classical laws (i.e. Fourier Law) are what they are and what are their
PHYS-325: Introduction to plasma physics
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
Afficher plus
Séances de cours associées (26)
Algèbre booléenne : propriétés et optimisation
Explore les propriétés de l'algèbre booléenne et les techniques d'optimisation en utilisant les diagrammes de Karnaugh et les théorèmes de De Morgan.
Magnétohydrodynamique : modélisation et équations
Couvre la magnétohydrodynamique, se concentrant sur les défis de modélisation et les équations MHD en physique du plasma.
Optimiser les fonctions logiques
Couvre l'optimisation des fonctions logiques en utilisant des diagrammes de Karnaugh et en traitant des fonctions définies incomplètes.
Afficher plus