Résumé
Computational Engineering is an emerging discipline that deals with the development and application of computational models for engineering, known as Computational Engineering Models or CEM. At this time, various different approaches are summarized under the term Computational Engineering, including using computational geometry and virtual design for engineering tasks, often coupled with a simulation-driven approach In Computational Engineering, algorithms solve mathematical and logical models that describe engineering challenges, sometimes coupled with some aspect of AI, specifically Reinforcement Learning. In Computational Engineering the engineer encodes their knowledge using logical structuring. The result is an algorithm, the Computational Engineering Model, that can produce many different variants of engineering designs, based on varied input requirements. The results can then be analyzed through additional mathematical models to create algorithmic feedback loops. Simulations of physical behaviors relevant to the field, often coupled with high-performance computing, to solve complex physical problems arising in engineering analysis and design (as well as natural phenomena (computational science). It is therefore related to Computational Science and Engineering, which has been described as the "third mode of discovery" (next to theory and experimentation). In Computational Engineering, computer simulation provides the capability to create feedback that would be inaccessible to traditional experimentation or where carrying out traditional empirical inquiries is prohibitively expensive. Computational Engineering should neither be confused with pure computer science, nor with computer engineering, although a wide domain in the former is used in Computational Engineering (e.g., certain algorithms, data structures, parallel programming, high performance computing) and some problems in the latter can be modeled and solved with Computational Engineering methods (as an application area).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (2)

Microscopic picture of paraelectric perovskites from structural prototypes

Nicola Marzari, Giovanni Pizzi, Michele Kotiuga, Boris Kozinsky

We highlight with first-principles molecular dynamics the persistence of intrinsic < 111 > Ti off-centerings for BaTiO3 in its cubic paraelectric phase. Intriguingly, these are inconsistent with the P
AMER PHYSICAL SOC2022

Hierarchically refined isogeometric analysis of trimmed shells

Luca Coradello, Alessandro Reali

This work focuses on the study of several computational challenges arising when trimmed surfaces are directly employed for the isogeometric analysis of Kirchhoff-Love shells. To cope with these issues
SPRINGER2020
Concepts associés (6)
Mathématiques appliquées
vignette|280px|En théorie des graphes, principales topologies typiques de graphes. Les mathématiques appliquées sont une branche des mathématiques qui s'intéresse à l'application du savoir mathématique aux autres domaines.
Engineering mathematics
Engineering mathematics is a branch of applied mathematics concerning mathematical methods and techniques that are typically used in engineering and industry. Along with fields like engineering physics and engineering geology, both of which may belong in the wider category engineering science, engineering mathematics is an interdisciplinary subject motivated by engineers' needs both for practical, theoretical and other considerations outside their specialization, and to deal with constraints to be effective in their work.
Computational engineering
Computational Engineering is an emerging discipline that deals with the development and application of computational models for engineering, known as Computational Engineering Models or CEM. At this time, various different approaches are summarized under the term Computational Engineering, including using computational geometry and virtual design for engineering tasks, often coupled with a simulation-driven approach In Computational Engineering, algorithms solve mathematical and logical models that describe engineering challenges, sometimes coupled with some aspect of AI, specifically Reinforcement Learning.
Afficher plus
Cours associés (1)
CH-609: Introduction to the ChemInfo ELN of ISIC
This course will be on Electronic Laboratory Notebooks and is aimed at (future) users. Multiple electronic lab notebooks exists. The course will focus on the Cheminfo tools (https://eln.epfl.ch/).
Séances de cours associées (22)
Flux de travail sur les humanités numériques
Explore le flux de travail dans les humanités numériques, en mettant l'accent sur la collecte et la visualisation des données.
Méthodes numériques stochastiques efficaces
Explore des méthodes numériques stochastiques efficaces pour la modélisation et l'apprentissage, couvrant des sujets comme le moteur d'analyse et les inhibiteurs de la kinase.
Méthodes intégrées de chemin: Techniques avancées
Explore les méthodes avancées d'intégrale de chemin dans la science informatique, couvrant l'échantillonnage efficace, le bruit coloré, les intégrales de haut ordre, et les thermostats quantiques.
Afficher plus