Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les perceptrons multicouches (MLP) et leur application de la classification à la régression, y compris le théorème d'approximation universelle et les défis liés aux gradients.
Discute de la différenciation automatique, en mettant l'accent sur la différenciation en mode inverse pour optimiser les filtres de couche convolutifs par descente de gradient.
Couvre l'algorithme BackProp, y compris l'initialisation, la propagation du signal, le calcul des erreurs, la mise à jour du poids et la comparaison de la complexité avec la différenciation numérique.
Explique le processus d'apprentissage dans les réseaux neuronaux multicouches, y compris la rétropropagation, les fonctions d'activation, la mise à jour des poids et la rétropropagation des erreurs.
Plonge dans la propagation en arrière dans l'apprentissage profond, répondant au défi de la disparition du gradient et à la nécessité d'unités cachées efficaces.