Grammaire formelleUne grammaire formelle est un formalisme permettant de définir une syntaxe et donc un langage formel, c'est-à-dire un ensemble de mots admissibles sur un alphabet donné. La notion de grammaire formelle est particulièrement utilisée en programmation logique, compilation (analyse syntaxique), en théorie de la calculabilité et dans le traitement des langues naturelles (tout particulièrement en ce qui concerne leur morphologie et leur syntaxe).
Deterministic pushdown automatonIn automata theory, a deterministic pushdown automaton (DPDA or DPA) is a variation of the pushdown automaton. The class of deterministic pushdown automata accepts the deterministic context-free languages, a proper subset of context-free languages. Machine transitions are based on the current state and input symbol, and also the current topmost symbol of the stack. Symbols lower in the stack are not visible and have no immediate effect. Machine actions include pushing, popping, or replacing the stack top.
Grammaire ambigüeEn informatique théorique et en théorie des langages, une grammaire ambiguë ou ambigüe est une grammaire algébrique qui admet un mot avec deux dérivations gauches distinctes ou — de manière équivalente — deux arbres de dérivation distincts. L'ambiguïté ou l'inambiguïté est une propriété des grammaires, et non des langages. De nombreux langages admettent à la fois des grammaires ambiguës et inambigües, alors que d'autres ne possèdent que des grammaires ambiguës.
Automate à pileUn automate à pile est une machine abstraite utilisée en informatique théorique et, plus précisément, en théorie des automates. Un automate à pile est une généralisation des automates finis : il dispose en plus d'une mémoire infinie organisée en pile (last-in/first-out ou LIFO). Un automate à pile prend en entrée un mot et réalise une série de transitions. Il effectue pour chaque lettre du mot une transition, dont le choix dépend de la lettre, de l'état de l'automate et du sommet de la pile ; il peut aussi modifier le contenu de la pile.
Théorie des automatesEn informatique théorique, l'objectif de la théorie des automates est de proposer des modèles de mécanismes mathématiques qui formalisent les méthodes de calcul.
Langage algébriqueEn théorie des langages formels, un langage algébrique ou langage non contextuel est un langage qui est engendré par une grammaire algébrique. De manière équivalente, un langage algébrique est un langage reconnu par un automate à pile. Les langages algébriques forment les langages de dans la hiérarchie de Chomsky. Ils ont des applications importantes dans la description des langages de programmation et en linguistique. Ils interviennent également dans la description des langages XML.