Concept

Differential ideal

Résumé
In the theory of differential forms, a differential ideal I is an algebraic ideal in the ring of smooth differential forms on a smooth manifold, in other words a graded ideal in the sense of ring theory, that is further closed under exterior differentiation d, meaning that for any form α in I, the exterior derivative dα is also in I. In the theory of differential algebra, a differential ideal I in a differential ring R is an ideal which is mapped to itself by each differential operator. Exterior differential systems and partial differential equations An exterior differential system consists of a smooth manifold M and a differential ideal : I\subset \Omega^*(M) . An integral manifold of an exterior differential system (M,I) consists of a submanifold N\subset M having the property that the pullback to N of all differential forms contained in I vanishes identically. One can express any partial di
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement