Concept

Harmonic superspace

Résumé
In supersymmetry, harmonic superspace is one way of dealing with supersymmetric theories with 8 real SUSY generators in a manifestly covariant manner. It turns out that the 8 real SUSY generators are pseudoreal, and after complexification, correspond to the tensor product of a four-dimensional Dirac spinor with the fundamental representation of SU(2)R. The quotient space SU(2)_R/U(1)_R \approx S^2 \simeq \mathbb{CP}^1, which is a 2-sphere/Riemann sphere. Harmonic superspace describes N=2 D=4, N=1 D=5, and N=(1,0) D=6 SUSY in a manifestly covariant manner. There are many possible coordinate systems over S2, but the one chosen not only involves redundant coordinates, but also happen to be a coordinatization of SU(2)_R \approx S^3. We only get S2 after a projection over U(1)_R \approx S^1. This is of course the Hopf fibration. Consider the left action of SU(2)R upon itself. We can then extend this to the space of complex valued smooth functions
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement