The polywell is a design for a fusion reactor based on two ideas: heating ions by concentrating (-) charge to accelerate the ions and trapping a diamagnetic plasma inside a cusp field.
This kind of plasma trap is based on the idea that a plasma will create its own magnetic field that rejects the outside field. That is not common behavior for a fusing plasma. A similar trapping concept was tested by the Lockheed-Martin high beta fusion reactor team, which tried to hold a plasma in a similar way.
The Polywell attempts to heat plasma by creating a negative voltage, which attracts positive ions. Like a fusor, as the ions accelerate towards the negative center, their kinetic energy rises. Ions that collide at high enough energies can fuse. But getting this heating approach to work means the Polywell must also concentrate negative charge, which breaks the quasi-neutral assumption.
Fusor
A Farnsworth-Hirsch fusor consists of two wire cages, one inside the other, often referred to as grids, that are placed inside a vacuum chamber. The outer cage has a positive voltage versus the inner cage. A fuel, typically, deuterium gas, is injected into this chamber. It is heated past its ionization temperature, making positive ions. The ions are positive and move towards the negative inner cage. Those that miss the wires of the inner cage fly through the center of the device at high speeds and can fly out the other side of the inner cage. As the ions move outward, a Coulomb force impels them back towards the center. Over time, a core of ionized gas can form inside the inner cage. Ions pass back and forth through the core until they strike either the grid or another nucleus. Most nucleus strikes do not result in fusion. Grid strikes can raise the temperature of the grid as well as eroding it. These strikes conduct mass and energy away from the plasma, as well as spall off metal ions into the gas, which cools it.
In fusors, the potential well is made with a wire cage. Because most of the ions and electrons fall onto the cage, fusors suffer from high conduction losses.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
Un focalisateur de plasma dense (en anglais dense plasma focus, abrégé DPF), est un appareil qui, par accélération et compression électromagnétiques, donne naissance à un cordon de plasma à vie courte qui produit, grâce aux températures et densités très élevées qu'il atteint, une abondance de rayonnements multiples. Sa conception, qui date du début des années 1960, est due à la fois à l'Américain J.W. Mather et au Russe N.V. Filippov, qui l'ont inventé parallèlement et indépendamment l'un de l'autre.
Le confinement inertiel électrostatique (en anglais Inertial electrostatic confinement ou IEC), ou plus simplement confinement électrostatique, est un procédé permettant, grâce à un champ électrostatique, de maintenir un plasma dans un volume suffisamment restreint, et à une température suffisamment élevée, de telle sorte que des réactions de fusion nucléaire puissent s'y produire. Le dispositif IEC le plus ancien et le plus connu est le fuseur de Farnsworth-Hirsch.
La conversion directe d'énergie, ou plus simplement la conversion directe, est une technologie qui permet de convertir l'énergie cinétique d'une particule chargée en une tension électrique. Elle est utilisée pour produire de l'énergie électrique à partir de l'énergie de fusion nucléaire. vignette| Schéma d'un système de conversion directe d'énergie montrant le principe de base. Au milieu des années 1960, une technique de conversion directe d'énergie avait été proposée comme méthode permettant de capturer l'énergie cinétique des particules produites dans un réacteur à fusion afin de générer directement un courant continu d'électricité.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Explore les solutions de réseau neuronal profond pour l'équation électronique Schrödinger et leur efficacité de calcul dans la physique de nombreux corps.
Explore la physique des plasmas, la fusion nucléaire et les techniques expérimentales pour étudier les plasmas de limite tokamak, visant à réaliser une production d'énergie propre et durable.
Couvre les configurations d'équilibre MHD, y compris les concepts de tokamak et de stellarator, les équations d'équilibre de force et les facteurs de sécurité.
MAST-U is equipped with on-axis and off-axis neutral beam injectors (NBI), and these external sources of super-Alfv & eacute;nic deuterium fast-ions provide opportunities for studying a wide range of phenomena relevant to the physics of alpha-particles in ...
The heat flux mitigation during the thermal quench (TQ) by the shattered pellet injection (SPI) is one of the major elements of disruption mitigation strategy for ITER. It's efficiency greatly depends on the SPI and the target plasma parameters, and is ult ...
Electron cloud continues to be one of the main limiting factors of the Large Hadron Collider (LHC), the biggest accelerator at CERN. These clouds form in the beam chamber when positively charged particles are passing through and cause unwanted effects in b ...