En géométrie, le théorème de Cauchy, ou théorème de rigidité de Cauchy, affirme que tout polyèdre convexe est rigide. Autrement dit, si les faces de deux polyèdres convexes sont deux à deux isométriques, ces polyèdres sont isométriques. Un patron de polyèdre convexe détermine le polyèdre initial de façon unique.
Ce résultat est fondamental pour la théorie de la rigidité : une conséquence en est qu'un modèle physique d'un polyèdre convexe obtenu en reliant des faces rigides par des charnières flexibles est indéformable.
Ce théorème est nommé en l'honneur d'Augustin Louis Cauchy, qui en a publié une démonstration en 1813, après des travaux de Joseph-Louis Lagrange et Adrien-Marie Legendre.
Soit P et Q deux polyèdres convexes combinatoirement équivalents, c'est-à-dire dont les réseaux des faces sont isomorphes, et tels que deux faces correspondantes de P et Q soient identiques à un déplacement près. Alors P et Q sont eux-mêmes identiques à un déplacement près.
Le résultat est sous-entendu par Euclide dans ses Éléments, deux solides y étant définis comme égaux si leurs faces sont égales. L'énoncé donné plus haut fut démontré par Augustin Cauchy en 1813, en s'appuyant sur des travaux antérieurs de Joseph-Louis Lagrange. Une erreur technique dans cette démonstration fut trouvée par Ernst Steinitz vers 1920, et corrigée par lui en 1928 et par Alexandrov en 1950. Une version plus moderne de cette démonstration, se prêtant mieux à des généralisations, fut donnée par James J. Stoker en 1968.
Le résultat (trivialement faux pour les polygones ayant plus de trois côtés) ne se généralise pas non plus à des polyèdres non-convexes : il existe des polyèdres (non convexes) flexibles. En particulier, la sphère de Connelly, un polyèdre flexible homéomorphe à une sphère, fut découverte par en 1977.
Le théorème fut étendu aux polytopes convexes de dimension > 3 par Alexandrov en 1950.
En 1974, Herman Gluck montra qu'en un certain sens précis, presque tous les polyèdres non-convexes sont rigides.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
The Alexandrov uniqueness theorem is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each other also have distinct metric spaces of surface distances, and it characterizes the metric spaces that come from the surface distances on polyhedra. It is named after Soviet mathematician Aleksandr Danilovich Aleksandrov, who published it in the 1940s.
En géométrie, un polyèdre flexible, ou flexaèdre, est un polyèdre que l'on peut déformer continûment sans changer la forme de ses faces. Le théorème de rigidité de Cauchy montre qu'un tel polyèdre ne peut être convexe. Les premiers exemples de polyèdres flexibles, les , furent découverts par Raoul Bricard en 1897. Ce sont des surfaces auto-intersectantes (on parle parfois de polyèdres croisés, ou étoilés).
In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other. Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal.
The aim of this work was to formulate Santolina insularis essential oil-loaded nanocarriers, namely Penetration Enhancer containing Vesicles (PEVs), evaluate the physico-chemical features and stability, and gain insights into their ability to deliver the o ...
This thesis deals with the numerical modeling and simulation of granular media with large populations of non-spherical particles. Granular media are highly pervasive in nature and play an important role in technology. They are present in fields as diverse ...