In functional analysis, a branch of mathematics, a finite-rank operator is a bounded linear operator between Banach spaces whose is finite-dimensional. Finite-rank operators are matrices (of finite size) transplanted to the infinite dimensional setting. As such, these operators may be described via linear algebra techniques. From linear algebra, we know that a rectangular matrix, with complex entries, has rank if and only if is of the form Exactly the same argument shows that an operator on a Hilbert space is of rank if and only if where the conditions on are the same as in the finite dimensional case. Therefore, by induction, an operator of finite rank takes the form where and are orthonormal bases. Notice this is essentially a restatement of singular value decomposition. This can be said to be a canonical form of finite-rank operators. Generalizing slightly, if is now countably infinite and the sequence of positive numbers accumulate only at , is then a compact operator, and one has the canonical form for compact operators. If the series is convergent, is a trace class operator. The family of finite-rank operators on a Hilbert space form a two-sided *-ideal in , the algebra of bounded operators on . In fact it is the minimal element among such ideals, that is, any two-sided *-ideal in must contain the finite-rank operators. This is not hard to prove. Take a non-zero operator , then for some . It suffices to have that for any , the rank-1 operator that maps to lies in . Define to be the rank-1 operator that maps to , and analogously. Then which means is in and this verifies the claim. Some examples of two-sided *-ideals in are the trace-class, Hilbert–Schmidt operators, and compact operators. is dense in all three of these ideals, in their respective norms. Since any two-sided ideal in must contain , the algebra is simple if and only if it is finite dimensional. A finite-rank operator between Banach spaces is a bounded operator such that its range is finite dimensional.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.