Résumé
Functional electrical stimulation (FES) is a technique that uses low-energy electrical pulses to artificially generate body movements in individuals who have been paralyzed due to injury to the central nervous system. More specifically, FES can be used to generate muscle contraction in otherwise paralyzed limbs to produce functions such as grasping, walking, bladder voiding and standing. This technology was originally used to develop neuroprostheses that were implemented to permanently substitute impaired functions in individuals with spinal cord injury (SCI), head injury, stroke and other neurological disorders. In other words, a person would use the device each time he or she wanted to generate a desired function. FES is sometimes also referred to as neuromuscular electrical stimulation (NMES). FES technology has been used to deliver therapies to retrain voluntary motor functions such as grasping, reaching and walking. In this embodiment, FES is used as a short-term therapy, the objective of which is restoration of voluntary function and not lifelong dependence on the FES device, hence the name functional electrical stimulation therapy, FES therapy (FET or FEST). In other words, the FEST is used as a short-term intervention to help the central nervous system of the person to re-learn how to execute impaired functions, instead of making the person dependent on neuroprostheses for the rest of her or his life. Initial Phase II clinical trials conducted with FEST for reaching and grasping, and walking were carried out at KITE, the research arm of the Toronto Rehabilitation Institute. Neurons are electrically active cells. In neurons, information is coded and transmitted as a series of electrical impulses called action potentials, which represent a brief change in cell electric potential of approximately 80–90 mV. Nerve signals are frequency modulated; i.e. the number of action potentials that occur in a unit of time is proportional to the intensity of the transmitted signal. Typical action potential frequency is between 4 and 12 Hz.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
BIOENG-486: Sensorimotor neuroprosthetics
Teaching objectives: history, upper limb and hand neuroprostheses, lower limb neuroprostheses, student project.
Publications associées (22)