Résumé
Le théorème adiabatique est un concept important en mécanique quantique. Sa forme originelle, énoncée en 1928 par Max Born et Vladimir Fock, peut être énoncée de la manière suivante : Un système physique est maintenu dans son état propre instantané si une perturbation donnée agit sur lui suffisamment lentement et s'il y a un intervalle significatif entre la valeur propre et le reste du spectre de l'hamiltonien. Il peut ne pas être immédiatement compris à partir de cette formulation que le théorème adiabatique est, en fait, un concept extrêmement intuitif. Formulé simplement, un système quantique soumis à des conditions externes de modification graduelle peut adapter sa forme fonctionnelle, alors que dans le cas de modifications rapides, l'adaptation n'a pas le temps de se produire et par conséquent la densité de probabilité reste inchangée. Les conséquences de ce résultat simple en apparence sont nombreuses, variées et extrêmement subtiles. On commence cet article par une description qualitative, suivie par quelques exemples, avant d'entamer une analyse rigoureuse. Enfin seront présentées quelques techniques utilisées pour les calculs relatifs aux processus adiabatiques. Un processus diabatique est un processus dans lequel les conditions (externes) changeant rapidement empêchent le système d'adapter sa configuration durant son déroulement, ce qui fait que la densité de probabilité reste inchangée. Typiquement, il n'y a pas d'état propre de l'hamiltonien final de même forme fonctionnelle que pour l'état initial. Le système finit en une combinaison linéaire d'états dont la somme reproduit la densité de probabilité initiale. Un processus adiabatique est un processus dans lequel les conditions (externes) permettent l'adaptation du système, ce qui résulte en une modification de la densité de probabilité. Si le système est initialement dans un état propre de l'hamiltonien de départ, il sera finalement dans l'état propre « correspondant » de l'hamiltonien d'arrivée.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.