Dirty bitA dirty bit or modified bit is a bit that is associated with a block of computer memory and indicates whether the corresponding block of memory has been modified. The dirty bit is set when the processor writes to (modifies) this memory. The bit indicates that its associated block of memory has been modified and has not been saved to storage yet. When a block of memory is to be replaced, its corresponding dirty bit is checked to see if the block needs to be written back to secondary memory before being replaced or if it can simply be removed.
Modified Harvard architectureA modified Harvard architecture is a variation of the Harvard computer architecture that, unlike the pure Harvard architecture, allows memory that contains instructions to be accessed as data. Most modern computers that are documented as Harvard architecture are, in fact, modified Harvard architecture. Harvard architecture The original Harvard architecture computer, the Harvard Mark I, employed entirely separate memory systems to store instructions and data. The CPU fetched the next instruction and loaded or stored data simultaneously and independently.
Branch target predictorIn computer architecture, a branch target predictor is the part of a processor that predicts the target of a taken conditional branch or an unconditional branch instruction before the target of the branch instruction is computed by the execution unit of the processor. Branch target prediction is not the same as branch prediction which attempts to guess whether a conditional branch will be taken or not-taken (i.e., binary). In more parallel processor designs, as the instruction cache latency grows longer and the fetch width grows wider, branch target extraction becomes a bottleneck.
SilvermontSilvermont is a microarchitecture for low-power Atom, Celeron and Pentium branded processors used in systems on a chip (SoCs) made by Intel. Silvermont forms the basis for a total of four SoC families: Merrifield and Moorefield - consumer SoCs intended for smartphones Bay Trail - consumer SoCs aimed at tablets, hybrid devices, netbooks, nettops, and embedded/automotive systems Avoton - SoCs for micro-servers and storage devices Rangeley - SoCs targeting network and communication infrastructure.
Cache control instructionIn computing, a cache control instruction is a hint embedded in the instruction stream of a processor intended to improve the performance of hardware caches, using foreknowledge of the memory access pattern supplied by the programmer or compiler. They may reduce cache pollution, reduce bandwidth requirement, bypass latencies, by providing better control over the working set. Most cache control instructions do not affect the semantics of a program, although some can.
Algorithmes de remplacement des lignes de cacheArticle principal : mémoire cache Les mémoires caches dans les matériels informatiques sont le plus souvent partiellement associatives : une ligne de la mémoire principale ne peut être rangée que dans une partie bien définie de la mémoire cache. Dans le cas d'une mémoire cache logicielle, il est possible qu'elle soit totalement associative et gérée globalement. Dans les deux cas, se pose le problème de devoir dégager une place dans la mémoire cache, ou dans la partie de celle-ci concernée, lorsque celle-ci est pleine et qu'on veut y charger des données de la mémoire principale.
Predication (computer architecture)In computer architecture, predication is a feature that provides an alternative to conditional transfer of control, as implemented by conditional branch machine instructions. Predication works by having conditional (predicated) non-branch instructions associated with a predicate, a Boolean value used by the instruction to control whether the instruction is allowed to modify the architectural state or not. If the predicate specified in the instruction is true, the instruction modifies the architectural state; otherwise, the architectural state is unchanged.
Broadwell (microarchitecture)Broadwell is the fifth generation of the Intel Core Processor. It is Intel's codename for the 14 nanometer die shrink of its Haswell microarchitecture. It is a "tick" in Intel's tick–tock principle as the next step in semiconductor fabrication. Like some of the previous tick-tock iterations, Broadwell did not completely replace the full range of CPUs from the previous microarchitecture (Haswell), as there were no low-end desktop CPUs based on Broadwell.
Zen 2Zen 2 is a computer processor microarchitecture by AMD. It is the successor of AMD's Zen and Zen+ microarchitectures, and is fabricated on the 7 nm MOSFET node from TSMC. The microarchitecture powers the third generation of Ryzen processors, known as Ryzen 3000 for the mainstream desktop chips (codename "Matisse"), Ryzen 4000U/H (codename "Renoir") and Ryzen 5000U (codename "Lucienne") for mobile applications, as Threadripper 3000 for high-end desktop systems, and as Ryzen 4000G for accelerated processing units (APUs).
XScaleXScale est un processeur à faible consommation électrique, fabriqué par Intel. Il fait suite au rachat de la technologie StrongARM de DEC en mai 1997 à la fin d'un procès sur des brevets, intenté par DEC à l'encontre d'Intel, qui lui aurait pris certaines de ses technologies pour produire les processeurs Pentium. C'est une architecture RISC 32 bits initialement développée par ARM, à laquelle Intel a ajouté ses propres extensions au jeu d'instructions. Ce microprocesseur est disponible avec une mémoire cache de , en boîtier BGA à 256 broches.