En physique, la masse réduite est la masse attribuée à l'objet fictif mis en œuvre dans la simplification des problèmes d'interaction de deux corps de la mécanique newtonienne. On note habituellement la masse réduite par la lettre grecque μ et ses unités SI sont les mêmes que celles de la masse : les kilogrammes (kg). Soit deux particules en interaction mutuelle, l'une de masse et l'autre de masse , le mouvement de ces deux masses peut être réduit au mouvement d'une seule particule de masse (réduite) : La force appliquée sur cette masse est la résultante des forces entre les masses initiales. Le problème est alors résolu mathématiquement en remplaçant les masses comme suit: et La définition de masse réduite peut être généralisée au Problème à N corps: Lorsque la masse est très supérieure à la masse la masse réduite est approximativement égale à la plus faible des masses : Les équations de la mécanique sont dérivées comme suit. La deuxième loi de Newton permet d'exprimer la force exercée par la particule 2 sur la particule 1 comme La force exercée par la particule 1 sur la particule 2 est La troisième loi de Newton prévoit que le force exercée par la particule 2 sur la particule 1 est égale et opposée à la force exercée par la particule 1 sur la particule 2 Ainsi, et L'accélération relative arel entre les deux corps est donnée par Ceci permet de conclure que la particule 1 se déplace par rapport à la position de la particule 2 comme s'il s'agissait d'un corps de masse équivalente à la masse réduite. Le problème à deux corps est décrit en mécanique lagrangienne par le lagrangien suivant où ri est le vecteur de position de la particule (de masse mi) et V est une fonction d'énergie potentielle, qui ne dépend que de la distance entre les particules (condition nécessaire pour conserver l'invariance translationnelle du système). On définit et on positionne l'origine du système de coordonnées utilisé afin qu'il coïncide avec le centre de masse, ainsi De cette manière, En substituant ceci dans le lagrangien on obtient un nouveau lagrangien pour une particule de masse réduite : Nous avons donc réduit le problème initial à deux corps à un problème simplifié à un corps.
Jürg Alexander Schiffmann, Elia Iseli
Fabio Nobile, Eleonora Musharbash, Eva Vidlicková
Jian Wang, Lesya Shchutska, Olivier Schneider, Yiming Li, Yi Zhang, Aurelio Bay, Guido Haefeli, Christoph Frei, Frédéric Blanc, Tatsuya Nakada, Michel De Cian, Luca Pescatore, François Fleuret, Elena Graverini, Renato Quagliani, Maria Vieites Diaz, Federico Betti, Aravindhan Venkateswaran, Luis Miguel Garcia Martin, Vitalii Lisovskyi, Sebastian Schulte, Veronica Sølund Kirsebom, Elisabeth Maria Niel, Mingkui Wang, Zhirui Xu, Lei Zhang, Ho Ling Li, Mark Tobin, Minh Tâm Tran, Niko Neufeld, Matthew Needham, Marc-Olivier Bettler, Maurizio Martinelli, Vladislav Balagura, Donal Patrick Hill, Liang Sun, Pietro Marino, Mirco Dorigo, Xiaoxue Han, Liupan An, Federico Leo Redi, Plamen Hristov Hopchev, Thibaud Humair, Maxime Schubiger, Hang Yin, Guido Andreassi, Violaine Bellée, Olivier Göran Girard, Preema Rennee Pais, Pavol Stefko, Tara Nanut, Maria Elena Stramaglia, Yao Zhou, Tommaso Colombo, Vladimir Macko, Guillaume Max Pietrzyk, Evgenii Shmanin, Simone Meloni, Xiaoqing Zhou, Surapat Ek-In, Carina Trippl, Sara Celani, Serhii Cholak, Dipanwita Dutta, Zheng Wang, Yi Wang, Hans Dijkstra, Gerhard Raven, Peter Clarke, Frédéric Teubert, Giovanni Carboni, Victor Coco, Adam Davis, Paolo Durante, Wenyu Zhang, Yu Zheng, Anton Petrov, Maxim Borisyak, Feng Jiang, Zhipeng Tang, Xuan Li, Alexey Boldyrev, Almagul Kondybayeva, Hossein Afsharnia