Concept

Hécatonicosachore 5/2,3,3

En géométrie, l'hécatonicosachore 5/2,3,3 est un 4-polytope régulier étoilé ayant pour symbole de Schläfli {5/2,3,3}. C'est l'un des 10 polychores de Schläfli-Hess. Il est unique parmi les 10 car il possède 600 sommets, et a la même disposition de sommets que l'hécatonicosachore régulier. C'est l'un des quatre 4-polytopes réguliers étoilés découverts par Ludwig Schläfli. L'hécatonicosachore 5/2,3,3 est la stellation finale de l'hécatonicosachore. En ce sens, il est analogue au grand dodécaèdre étoilé tridimensionnel, qui est la stellation finale du dodécaèdre. Solides de Kepler-Poinsot Polygone régulier étoilé 4-polytope régulier convexe Edmund Hess, (1883) Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder . HSM Coxeter, Polytopes réguliers, 3e. éd., Dover Publications, 1973. . John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, Les symétries des choses 2008, (Chapitre 26, Regular Star-polytopes, pp.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.