Concept

Regular 4-polytope

Résumé
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures. Schläfli also found four of the regular star 4-polytopes: the grand 120-cell, great stellated 120-cell, grand 600-cell, and great grand stellated 120-cell. He skipped the remaining six because he would not allow forms that failed the Euler characteristic on cells or vertex figures (for zero-hole tori: F − E + V = 2). That excludes cells and vertex figures such as the great dodecahedron {5,5/2} and small stellated dodecahedron {5/2,5}. Edmund Hess (1843–1903) published the complete list in his 1883 German book Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder. The existence of a regular 4-polytope is constrained by the existence of the regular polyhedra which form its cells and a dihedral angle constraint to ensure that the cells meet to form a closed 3-surface. The six convex and ten star polytopes described are the only solutions to these constraints. There are four nonconvex Schläfli symbols {p,q,r} that have valid cells {p,q} and vertex figures {q,r}, and pass the dihedral test, but fail to produce finite figures: {3,5/2,3}, {4,3,5/2}, {5/2,3,4}, {5/2,3,5/2}. The regular convex 4-polytopes are the four-dimensional analogues of the Platonic solids in three dimensions and the convex regular polygons in two dimensions. Five of the six are clearly analogues of the five corresponding Platonic solids. The sixth, the 24-cell, has no regular analogue in three dimensions.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (82)
Grand hexacosichore
En géométrie, le grand hexacosichore, ou hécatonicosachore 3,3,5/2, est un 4-polytope régulier étoilé ayant pour symbole de Schläfli {3,3,5/2}. C'est l'un des 10 polychores de Schläfli-Hess, et le seul possédant 600 cellules. C'est l'un des quatre 4-polytopes réguliers étoilés découverts par Ludwig Schläfli. Le grand hexacosichore peut être considéré comme l'analogue quadridimensionnel du grand icosaèdre (qui est à son tour analogue au pentagramme) ; tous deux sont les seuls polytopes réguliers étoilés à n dimensions qui sont dérivés en effectuant des opérations de stellation sur un polytope pentagonal.
Density (polytope)
In geometry, the density of a star polyhedron is a generalization of the concept of winding number from two dimensions to higher dimensions, representing the number of windings of the polyhedron around the center of symmetry of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the facets of the polytope and not through any lower dimensional features, and counting how many facets it passes through.
Petit hécatonicosachore étoilé
En géométrie, le petit hécatonicosachore étoilé ou polydodécaèdre étoilé est un 4-polytope étoilé régulier ayant pour symbole de Schläfli {5/2,5,3}. C'est l'un des 10 polychores de Schläfli-Hess. Il a la même que l'hécatonicosachore 5,5/2,5 et partage également ses 120 sommets avec l'hexacosichore et huit autres polytopes réguliers étoilés. Il peut également être considéré comme la première stellation de l'hécatonicosichore. En ce sens, il pourrait être considéré comme analogue au petit dodécaèdre étoilé tridimensionnel, qui est la première stellation du dodécaèdre.
Afficher plus
Cours associés (15)
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
MATH-213: Differential geometry
Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.
Afficher plus