Concept

Spectrométrie photoélectronique UV

Résumé
La spectrométrie photoélectronique UV (en anglais UV photoelectron spectroscopy : UPS) est une méthode de spectrométrie photoélectronique qui implique la mesure des spectres de photoélectrons induits par des photons ultraviolets (UV). Elle est utilisée pour étudier les niveaux d'énergie de la couche de valence et les liaisons chimiques, surtout le caractère liant des orbitales moléculaires. Cette méthode a été développée originellement pour des molécules en phase gazeuse en 1962 par , les autres pionniers sont David C. Frost, J.H.D. Eland and K. Kimura. Plus tard, Richard Smalley modifia la technique et utilisa un laser UV pour exciter l'échantillon, afin de mesurer l'énergie de liaison d'électrons de clusters moléculaires gazeux. Selon la loi photoélectrique d'Einstein pour une molécule libre, l'énergie cinétique (Ec) d'un photoélectron émis est où h est la constante de Planck, ν est la fréquence de la lumière ionisante, et I est une énergie d'ionisation qui correspond à l'énergie d'une orbitale moléculaire occupée (pas nécessairement la plus haute). Avant 1960, presque toutes les mesures d'énergies cinétiques des photoélectrons étaient réalisées sur des électrons émis par des métaux et d'autres surfaces solides. Vers 1956 Kai Siegbahn développe la spectrométrie photoélectronique X (XPS) pour l'analyse chimique des surfaces solides. Cette méthode emploie les sources de rayons X pour étudier les niveaux d'énergie des électrons de cœur atomiques. À l'époque, la résolution en énergie était de l'ordre de (électron-volt). La méthode utilisant des photons ultraviolets (UPS) fut développée afin d'étudier les spectres photoélectroniques des molécules libres en phase gaz par David W. Turner, physico-chimiste au Imperial College (Londres) puis à l'université d'Oxford, dans une série de publications entre 1962 et 1967. Comme source de photons, il emploie une lampe à décharge d'hélium qui émet à une longueur d'onde de (ce qui correspond à une énergie de ) dans l'ultraviolet à vide. Avec cette source le groupe de Turner atteint une résolution en énergie de .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.