Concept

Ultraviolet photoelectron spectroscopy

Ultraviolet photoelectron spectroscopy (UPS) refers to the measurement of kinetic energy spectra of photoelectrons emitted by molecules which have absorbed ultraviolet photons, in order to determine molecular orbital energies in the valence region. If Albert Einstein's photoelectric law is applied to a free molecule, the kinetic energy () of an emitted photoelectron is given by where h is Planck's constant, ν is the frequency of the ionizing light, and I is an ionization energy for the formation of a singly charged ion in either the ground state or an excited state. According to Koopmans' theorem, each such ionization energy may be identified with the energy of an occupied molecular orbital. The ground-state ion is formed by removal of an electron from the highest occupied molecular orbital, while excited ions are formed by removal of an electron from a lower occupied orbital. Prior to 1960, virtually all measurements of photoelectron kinetic energies were for electrons emitted from metals and other solid surfaces. In about 1956, Kai Siegbahn developed X-ray photoelectron spectroscopy (XPS) for surface chemical analysis. This method uses x-ray sources to study energy levels of atomic core electrons, and at the time had an energy resolution of about 1 eV (electronvolt). The ultraviolet photoelectron spectroscopy (UPS) was pioneered by Feodor I. Vilesov, a physicist at St. Petersburg (Leningrad) State University in Russia (USSR) in 1961 to study the photoelectron spectra of free molecules in the gas phase. The early experiments used monochromatized radiation from a hydrogen discharge and a retarding potential analyzer to measure the photoelectron energies. The PES was further developed by David W. Turner, a physical chemist at Imperial College in London and then at Oxford University, in a series of publications from 1962 to 1967. As a photon source, he used a helium discharge lamp which emits a wavelength of 58.4 nm (corresponding to an energy of 21.2 eV) in the vacuum ultraviolet region.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CH-633: Advanced Solid State and Surface Characterization
State-of-the-art surface/thin film characterization methods of polycrystalline/nano/amorphous materials. Selected topics from thin film X-ray diffraction (GIWAXS, GISAXS, PDF), electronic and optical
CH-410: Physical and chemical analyses of materials
The course relates on the use of electromagnetic (X-Ray) and corpuscular (electrons) radiations for physical and chemical analysis of solid materials.
PHYS-724: Ultrafast Phenomena
The course will cover fundamental concepts and recent developments in the field of ultrafast spectroscopy and introduce the basic theory to understand ultrafast (10-16 - 10-9 s) phenomena in chemistry
Related lectures (5)
Surface Characterization: X-ray Photoelectron Spectroscopy
Covers the principles and applications of X-ray Photoelectron Spectroscopy for surface characterization.
XPS: Surface Analysis Techniques
Introduces X-ray Photoelectron Spectroscopy (XPS) for surface analysis, covering principles, applications, analysis process, and depth profiling techniques.
Show more
Related publications (40)

Electronic structure and lattice dynamics of 1T-VSe2:Origin of the three-dimensional charge density wave

Ji Dai, Lorenzo Monacelli

To characterize in detail the charge density wave (CDW) transition of 1T-VSe2, its electronic structure and lattice dynamics are comprehensively studied by means of x-ray diffraction, muon spectroscopy, angle resolved photoemission (ARPES), diffuse and ine ...
Amer Physical Soc2024

Jahn-Teller effects in initial and final states: high-resolution X-ray absorption, photoelectron and Auger spectroscopy of allene

Majed Chergui, Camila Bacellar Cases Da Silveira, Rebecca Ann Ingle, Luca Longetti, Thomas Roland Barillot, Daniel Hollas, Ludmila Maria Diniz Leroy

Carbon K-edge resonant Auger spectra of gas-phase allene following excitation of the pre-edge 1s -> pi* transitions are presented and analysed with the support of EOM-CCSD/cc-pVTZ calculations. X-Ray absorption (XAS), X-ray photoelectron (XPS), valence ban ...
ROYAL SOC CHEMISTRY2023

In situ work function measurements of W, WO3 nanostructured surfaces

Francisco Sanchez

Surface nanostructuring enables the fabrication of materials with highly desirable properties. Nanostructured tungsten surfaces have potential applications in solar water splitting. Exposing a polished tungsten surface to helium plasma induces various surf ...
ELSEVIER SCIENCE SA2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.