Concept

David Deutsch

Résumé
David Elieser Deutsch (dɔɪtʃ ; born 18 May 1953) is a British physicist at the University of Oxford. He is a visiting professor in the Department of Atomic and Laser Physics at the Centre for Quantum Computation (CQC) in the Clarendon Laboratory of the University of Oxford. He pioneered the field of quantum computation by formulating a description for a quantum Turing machine, as well as specifying an algorithm designed to run on a quantum computer. He has also proposed the use of entangled states and Bell's theorem for quantum key distribution and is a proponent of the many-worlds interpretation of quantum mechanics. Deutsch was born into a Jewish family in Haifa, Israel on 18 May 1953, the son of Oskar and Tikva Deutsch. In London, David attended Geneva House school in Cricklewood (his parents owned and ran the Alma restaurant on Cricklewood Broadway), followed by William Ellis School in Highgate (then a voluntary aided school in north London) before reading Natural Sciences at Clare College, Cambridge and taking Part III of the Mathematical Tripos. He went on to Wolfson College, Oxford for his doctorate in theoretical physics and wrote his thesis on quantum field theory in curved space-time supervised by Dennis Sciama and Philip Candelas. His work on quantum algorithms began with a 1985 paper, later expanded in 1992 along with Richard Jozsa to produce the Deutsch–Jozsa algorithm, one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm. In his 1985 paper, he also suggests the use of entangled states and Bell's theorem for quantum key distribution. In his nomination for election as a Fellow of the Royal Society (FRS) in 2008, his contributions were described as: [having] laid the foundations of the quantum theory of computation, and has subsequently made or participated in many of the most important advances in the field, including the discovery of the first quantum algorithms, the theory of quantum logic gates and quantum computational networks, the first quantum error-correction scheme, and several fundamental quantum universality results.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.