Résumé
vignette|Exemple de classification naïve bayésienne pour un ensemble de données dont le nombre augmente avec le temps. La classification naïve bayésienne est un type de classification bayésienne probabiliste simple basée sur le théorème de Bayes avec une forte indépendance (dite naïve) des hypothèses. Elle met en œuvre un classifieur bayésien naïf, ou classifieur naïf de Bayes, appartenant à la famille des classifieurs linéaires. Un terme plus approprié pour le modèle probabiliste sous-jacent pourrait être « modèle à caractéristiques statistiquement indépendantes ». En termes simples, un classifieur bayésien naïf suppose que l'existence d'une caractéristique pour une classe, est indépendante de l'existence d'autres caractéristiques. Un fruit peut être considéré comme une pomme s'il est rouge, arrondi, et fait une dizaine de centimètres. Même si ces caractéristiques sont liées dans la réalité, un classifieur bayésien naïf déterminera que le fruit est une pomme en considérant indépendamment ces caractéristiques de couleur, de forme et de taille. Selon la nature de chaque modèle probabiliste, les classifieurs bayésiens naïfs peuvent être entraînés efficacement dans un contexte d'apprentissage supervisé. Dans beaucoup d'applications pratiques, l'estimation des paramètres pour les modèles bayésiens naïfs repose sur le maximum de vraisemblance. Autrement dit, il est possible de travailler avec le modèle bayésien naïf sans se préoccuper de probabilité bayésienne ou utiliser les méthodes bayésiennes. Malgré leur modèle de conception « naïf » et ses hypothèses de base extrêmement simplistes, les classifieurs bayésiens naïfs ont fait preuve d'une efficacité plus que suffisante dans beaucoup de situations réelles complexes. En 2004, un article a montré qu'il existe des raisons théoriques derrière cette efficacité inattendue. Toutefois, une autre étude de 2006 montre que des approches plus récentes (arbres renforcés, forêts aléatoires) permettent d'obtenir de meilleurs résultats.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.