While phi-divergences have been extensively studied in convex analysis, their use in optimization problems often remains challenging. In this regard, one of the main shortcomings of existing methods is that the minimization of phi-divergences is usually pe ...
In this paper, we use methods from spectral graph theory to obtain some results on the sum-product problem over finite valuation rings R of order q(r) which generalize recent results given by Hegyvari and Hennecart (2013). More precisely, we prove that, fo ...
Graph-based methods for signal processing have shown promise for the analysis of data exhibiting irregular structure, such as those found in social, transportation, and sensor networks. Yet, though these systems are often dynamic, state-of-the-art methods ...
In this thesis we study a number of problems in Discrete Combinatorial Geometry in finite spaces. The contents in this thesis are structured as follows: In Chapter 1 we will state the main results and the notations which will be used throughout the thesis. ...
This paper describes the implementation of a 3D parallel and Cartesian level set (LS) method coupled with a volume of fluid (VOF) method into the commercial CFD code FLUENT for modeling the gas-liquid interface in bubbly flow. Both level set and volume of ...
We present the superspace formulation of the local RG equation, a framework for the study of supersymmetric RG flows in which the constraints of holomorphy and R-symmetry are manifest. We derive the consistency conditions associated with super-Weyl symmetr ...
Any finite, separately convex, positively homogeneous function on R2 is convex. This was first established by the first author ["Direct methods in calculus of variations", Springer-Verlag (1989)]. Here we give a new and concise proof of this re ...