Concept

Cartographie statistique paramétrique

Résumé
La cartographie statistique paramétrique (en statistical parametric mapping ou SPM) est une méthode d'analyse statistique employée en . Le terme SPM est à éviter pour désigner la méthode générale car il fait référence au logiciel développé par le Wellcome Department of Imaging Neuroscience de l'University College de Londres pour effectuer ce genre d'analyses. Ce logiciel prépare les images (TEP, IRMf, TEMP, EEG ou MEG) pour des analyses statistiques de chaque voxel d'une image. Ce logiciel fait l'hypothèse qu'un voxel représenterait la même partie anatomique d'un même cerveau pour toutes les images analysées. Or c'est souvent faux car les images traitées ont souvent été obtenues à des moments différents et chez différentes personnes. Les étapes essentielles du pré-traitement sont : le réalignement : les images sont acquises à différents moments (série temporelle) et donc le sujet a bougé. Le réalignement permet d'estimer les mouvements et d'aligner les images comme si le sujet n'avait pas bougé ; la normalisation : les images sont acquises chez différents sujets, or chaque personne a un cerveau différent. La normalisation permet d'étirer l'image du cerveau de telle sorte qu'il ressemble à un cerveau standard. Cette étape est essentielle si on veut faire des analyses statistiques de groupe ; le lissage : malgré les étapes précédentes, il reste des variations anatomiques individuelles qui doivent être diminuées si on veut faire une analyse de groupe. Pour ce faire, SPM applique un filtre Gaussien qui moyenne la valeur du voxel avec celle de ces voisins. Les modèles statistiques paramétriques sont appliqués à chaque voxel, en utilisant le modèle général linéaire pour décrire la variabilité des données en termes d'effets expérimentaux (ceux qui nous intéresse), d'effets confondants (sans intérêt) et de variabilité résiduelle (inexpliquée par le modèle). On doit donc d'abord construire le modèle en entrant des régresseurs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.