Concept

Statistical parametric mapping

Summary
Statistical parametric mapping (SPM) is a statistical technique for examining differences in brain activity recorded during functional neuroimaging experiments. It was created by Karl Friston. It may alternatively refer to software created by the Wellcome Department of Imaging Neuroscience at University College London to carry out such analyses. Functional neuroimaging is one type of 'brain scanning'. It involves the measurement of brain activity. The measurement technique depends on the imaging technology (e.g., fMRI and PET). The scanner produces a 'map' of the area that is represented as voxels. Each voxel represents the activity of a specific volume in three-dimensional space. The exact size of a voxel varies depending on the technology. fMRI voxels typically represent a volume of 27 mm3 in an equilateral cuboid. Researchers examine brain activity linked to a specific mental process or processes. One approach involves asking 'which areas of the brain are significantly more active when doing task A compared to task B?'. Although the tasks might be designed to be identical, except for the behaviour under investigation, the brain is still likely to show changes in activity between tasks due to factors other than task differences (as the brain coordinates many parallel functions unrelated to the task). Further, the signal may contain noise from the imaging process itself. To filter out these random effects, and to highlight the areas of activity linked specifically to the process under investigation, statistics look for the most significant differences. This involves a multi-stage process to prepare the data, and to analyse it using a general linear model. Images from the scanner may be pre-processed to remove noise or correct for sampling errors. A study usually scans a subject several times. To account for the motion of the head between scans, the images are typically adjusted so voxels in each image correspond (approximately) to the same site in the brain. This is referred to as realignment or motion correction, see image realignment.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.