Polyhedral combinatoricsPolyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex).
Icosidodécaèdre tronquéthumb|Patron (géométrie) L'icosidodécaèdre tronqué est un solide d'Archimède. Il possède 30 faces carrées régulières, 20 faces hexagonales régulières, 12 faces décagonales régulières, 120 sommets et 180 arêtes. Puisque chacune des faces possède un centre de symétrie, le grand rhombicosidodécaèdre est un zonoèdre (à quinze générateurs). Son dual est l'hexaki-icosaèdre, solide de Catalan. D'autres noms incluent : grand rhombicosidodécaèdre ; icosidodécaèdre rhombitronqué ; icosidodécaèdre .
Convex polytopeA convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue.
Truncated 24-cellsIn geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 24-cell. There are two degrees of truncations, including a bitruncation. The truncated 24-cell or truncated icositetrachoron is a uniform 4-dimensional polytope (or uniform 4-polytope), which is bounded by 48 cells: 24 cubes, and 24 truncated octahedra. Each vertex joins three truncated octahedra and one cube, in an equilateral triangular pyramid vertex figure.