A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary. Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. In the influential textbooks of Grünbaum and Ziegler on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avoid the endless repetition of the word "convex", and that the discussion should throughout be understood as applying only to the convex variety (p. 51). A polytope is called full-dimensional if it is an -dimensional object in . Many examples of bounded convex polytopes can be found in the article "polyhedron". In the 2-dimensional case the full-dimensional examples are a half-plane, a strip between two parallel lines, an angle shape (the intersection of two non-parallel half-planes), a shape defined by a convex polygonal chain with two rays attached to its ends, and a convex polygon. Special cases of an unbounded convex polytope are a slab between two parallel hyperplanes, a wedge defined by two non-parallel half-spaces, a polyhedral cylinder (infinite prism), and a polyhedral cone (infinite cone) defined by three or more half-spaces passing through a common point. A convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. Grünbaum's definition is in terms of a convex set of points in space.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (27)
MGT-418: Convex optimization
This course introduces the theory and application of modern convex optimization from an engineering perspective.
MATH-476: Optimal transport
The first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
EE-556: Mathematics of data: from theory to computation
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Afficher plus
Séances de cours associées (90)
Convexité géodésique : théorie et applications
Explore la convexité géodésique dans les espaces métriques et ses applications, en discutant des propriétés et de la stabilité des inégalités.
Transport optimal : théorème de Rockafellar
Explore le théorème de Rockafellar dans un transport optimal, en se concentrant sur la monotonicité c-cyclique et les fonctions convexes.
Estimation linéaire MM SE
Couvre les principes de l'estimation linéaire MM SE et de la minimisation des erreurs en régression linéaire.
Afficher plus
Publications associées (143)

Reactive collision-free motion generation in joint space via dynamical systems and sampling-based MPC

Aude Billard, Mikhail Koptev, Nadia Barbara Figueroa Fernandez

Dynamical system (DS) based motion planning offers collision-free motion, with closed-loop reactivity thanks to their analytical expression. It ensures that obstacles are not penetrated by reshaping a nominal DS through matrix modulation, which is construc ...
Sage Publications Ltd2024

Non-parametric IQC Multipliers in Data-Driven Robust Controller Synthesis

Alireza Karimi, Vaibhav Gupta, Elias Sebastian Klauser

The paper presents a robust data-driven controller synthesis method for generalised multi-input multioutput (MIMO) systems. Using the frequency response of a linear time-invariant (LTI) MIMO system and characterising perturbations through Integral Quadrati ...
2024

Fully solvable finite simplex lattices with open boundaries in arbitrary dimensions

Fabrizio Minganti

Finite simplex lattice models are used in different branches of science, e.g., in condensed-matter physics, when studying frustrated magnetic systems and non-Hermitian localization phenomena; or in chemistry, when describing experiments with mixtures. An n ...
College Pk2023
Afficher plus
Concepts associés (29)
Arête (géométrie)
En géométrie dans l'espace, une arête est une droite délimitant deux demi-plans qui constituent les faces d’un angle diédral, ou plus spécialement le côté d’une face d’un polyèdre. Plus généralement, une arête d'un solide géométrique est la ligne d'intersection de deux surfaces de ce solide. À ce titre, l'arête n'est pas nécessairement une droite euclidienne. Un angle formé par deux demi-droites perpendiculaires à l’arête, issues d'un point de l’arête et incluses dans chacune des faces d’un dièdre, ne dépend pas du choix du point.
Complexe simplicial
thumb|Exemple d'un complexe simplicial.En mathématiques, un complexe simplicial est un objet géométrique déterminé par une donnée combinatoire et permettant de décrire certains espaces topologiques en généralisant la notion de triangulation d'une surface. Un tel objet se présente comme un graphe avec des sommets reliés par des arêtes, sur lesquelles peuvent se rattacher des faces triangulaires, elles-mêmes bordant éventuellement des faces de dimension supérieure, etc.
Enveloppe convexe
L'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Afficher plus
MOOCs associés (1)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.