Résumé
Hyperpolarization is the nuclear spin polarization of a material in a magnetic field far beyond thermal equilibrium conditions determined by the Boltzmann distribution. It can be applied to gases such as 129Xe and 3He, and small molecules where the polarization levels can be enhanced by a factor of 104-105 above thermal equilibrium levels. Hyperpolarized noble gases are typically used in magnetic resonance imaging (MRI) of the lungs. Hyperpolarized small molecules are typically used for in vivo metabolic imaging. For example, a hyperpolarized metabolite can be injected into animals or patients and the metabolic conversion can be tracked in real-time. Other applications include determining the function of the neutron spin-structures by scattering polarized electrons from a very polarized target (3He), surface interaction studies, and neutron polarizing experiments. Spin exchange optical pumping (SEOP) is one of several hyperpolarization techniques discussed on this page. This technique specializes in creating hyperpolarized (HP) noble gases, such as 3He, 129Xe, and quadrupolar 131Xe, 83Kr, and 21Ne. Noble gases are required because SEOP is performed in the gas phase, they are chemically inert, non-reactive, chemically stable with respect to alkali metals, and their T1 is long enough to build up polarization. Spin 1/2 noble gases meet all these requirements, and spin 3/2 noble gases do to an extent, although some spin 3/2 do not have a sufficient T1. Each of these noble gases has their own specific application, such as characterizing lung space and tissue via in vivo molecular imaging and functional imaging of lungs, to study changes in metabolism of healthy versus cancer cells, or use as targets for nuclear physics experiments. During this process, circularly polarized infrared laser light, tuned to the appropriate wavelength, is used to excite electrons in an alkali metal, such as caesium or rubidium inside a sealed glass vessel.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (3)
Personnes associées (2)