Couvre les systèmes dynamiques, les points d'équilibre, l'analyse de stabilité et les placettes de phase à l'aide d'exemples comme le système pendulaire.
Explore le contrôle des systèmes dynamiques, la réponse impulsionnelle, la transformée de Laplace et la transformée de Fourier pour résoudre les équations différentielles.
Présente l'approche de l'espace d'état pour modéliser des systèmes dynamiques et son utilité pour la solution à grande vitesse des équations différentielles et des algorithmes informatiques.
Explore la rareté de l'apprentissage des réseaux de réaction chimique à partir des données de trajectoire à l'aide de méthodes fondées sur les données et d'approches d'apprentissage.