Concept

Métaballe

Résumé
Les métaballes (de l'anglais metaballs) sont une technique utilisée en infographie pour créer des formes organiques ou représenter des fluides. En français, on trouve également la dénomination « objets mous ». Les metaballs sont une variante des soft objects mais le nom s'est imposé dans la littérature et dans les logiciels. Ce concept a été inventé par Jim Blinn au début des années 1980. Chaque balle est définie comme une fonction mathématique à N dimensions. Les plus courantes sont en trois dimensions, on définit alors la fonction . Cette fonction retourne un scalaire et permet de définir un champ scalaire. Une valeur de seuil est ensuite choisie pour délimiter la surface. Il est possible de mélanger plusieurs balles qui vont mutuellement s'influencer et contribuer aux valeurs du champ scalaire. indique si le point se trouve à l'intérieur du volume confiné par la surface. Une fonction typique pour des métaballes est , où est le centre de la balle. La division rend cependant cette fonction assez lente à calculer. On peut utiliser à la place des approximations polynômiales. Voilà quelques propriétés que peut avoir cette fonction : si l'on cherche à faire des sphères, il faut que la fonction ne dépende que de la distance : . si l'on cherche à créer une surface sans ressaut, il faut que la fonction soit continue. si l'on cherche à créer une surface lisse (sans rupture de pente), il faut que la fonction soit à dérivée continue. si l'on cherche à créer une surface avec des reflets continus, il faut que la fonction soit à dérivée seconde continue. Pour pouvoir accélérer les calculs, il peut être intéressant d'avoir une fonction nulle au-delà d'une certaine distance, pour que les métaballes n'influent l'une sur l'autre qu'à une distance raisonnable. Dans ce cas pour avoir de « jolies » métaballes (continues, lisses et sans rupture des reflets) avec des polynômes, la fonction la plus simple est : si sinon. Plusieurs méthodes existent pour afficher des métaballes.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.